Extensionless modules over tame hereditary algebras

Frank Okoh

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 2, page 285-299
  • ISSN: 0010-1354

How to cite

top

Okoh, Frank. "Extensionless modules over tame hereditary algebras." Colloquium Mathematicae 73.2 (1997): 285-299. <http://eudml.org/doc/210491>.

@article{Okoh1997,
author = {Okoh, Frank},
journal = {Colloquium Mathematicae},
keywords = {finite-dimensional connected tame hereditary algebras; torsion-free extensionless modules of finite rank; height functions; Kronecker algebras; modules over Dedekind domains},
language = {eng},
number = {2},
pages = {285-299},
title = {Extensionless modules over tame hereditary algebras},
url = {http://eudml.org/doc/210491},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Okoh, Frank
TI - Extensionless modules over tame hereditary algebras
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 2
SP - 285
EP - 299
LA - eng
KW - finite-dimensional connected tame hereditary algebras; torsion-free extensionless modules of finite rank; height functions; Kronecker algebras; modules over Dedekind domains
UR - http://eudml.org/doc/210491
ER -

References

top
  1. [1] N. Aronszajn and U. Fixman, Algebraic spectral problems, Studia Math. 30 (1968), 273-338. 
  2. [2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. 
  3. [3] K. Bongartz, Tilted algebras, in: Lecture Notes in Math. 903, Springer, Berlin, 1982, 26-38. 
  4. [4] F. V. Colhoe, A note on preinjective partial tilting modules, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 109-115. Zbl0809.16014
  5. [5] P. Eklof and M. Huber, On the rank of Ext, Math. Z. 174 (1980), 159-185. Zbl0424.20051
  6. [6] U. Fixman, On algebraic equivalence between pairs of linear transformations, Trans. Amer. Math. Soc. 113 (1964), 424-453. Zbl0192.13105
  7. [7] L. Fuchs, Infinite Abelian Groups, Vols. I, II, Academic Press, New York, 1970, 1973. 
  8. [8] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, Berlin, 1980, 1-71. 
  9. [9] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), 273-343. 
  10. [10] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327-340. Zbl0046.25701
  11. [11] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. Zbl0809.16012
  12. [12] H. Lenzing and F. Okoh, The separability of direct products of modules over a canonical algebra, ibid., 339-352. Zbl0827.16008
  13. [13] M. Nagata, Local Rings, Interscience, New York, 1962. 
  14. [14] F. Okoh, Indecomposable rank two modules over some artinian ring, J. London Math. Soc. 22 (1980), 411-422. Zbl0418.16017
  15. [15] F. Okoh, Extensionless modules of finite rank over countable Dedekind domains, Arch. Math. (Basel) 59 (1992), 232-238. Zbl0756.13005
  16. [16] F. Okoh, The rank of a completion of a Dedekind domain, Comm. Algebra 21 (1993), 4561-4574. Zbl0792.13007
  17. [17] F. Okoh, Bouquets of Baer modules, J. Pure Appl. Algebra 93 (1994), 297-310. Zbl0817.16006
  18. [18] F. Okoh, Infinite-dimensional partial tilting modules, in preparation. 
  19. [19] C. M. Ringel, Infinite-dimensional representations of finite-dimensional hereditary algebras, Sympos. Mat. Inst. Alta Mat. 23 (1979), 321-412. 
  20. [20] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, 1992. Zbl0818.16009
  21. [21] O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenen Restklassenkörper, J. Reine Angew. Math. 176 (1936), 141-152. 
  22. [22] R. B. Warfield, Jr., Extensions of torsion-free Abelian groups of finite rank, Arch. Math. (Basel) 23 (1972), 145-150. Zbl0244.20064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.