Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux

Stéphane Louboutin

Acta Arithmetica (1992)

  • Volume: 62, Issue: 2, page 109-124
  • ISSN: 0065-1036

How to cite

top

Stéphane Louboutin. "Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux." Acta Arithmetica 62.2 (1992): 109-124. <http://eudml.org/doc/206484>.

@article{StéphaneLouboutin1992,
author = {Stéphane Louboutin},
journal = {Acta Arithmetica},
keywords = {lower bounds for ; Dirichlet -function; totally imaginary sextic abelian number fields; class number one; lower bound; relative class number},
language = {fre},
number = {2},
pages = {109-124},
title = {Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux},
url = {http://eudml.org/doc/206484},
volume = {62},
year = {1992},
}

TY - JOUR
AU - Stéphane Louboutin
TI - Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux
JO - Acta Arithmetica
PY - 1992
VL - 62
IS - 2
SP - 109
EP - 124
LA - fre
KW - lower bounds for ; Dirichlet -function; totally imaginary sextic abelian number fields; class number one; lower bound; relative class number
UR - http://eudml.org/doc/206484
ER -

References

top
  1. [1] H. Davenport, Multiplicative Number Theory, Graduate Texts in Math.74, 2nd ed., Springer, 1980. 
  2. [2] H. Delange, Une remarque sur la dérivée logarithmiquede la fonction zêta de Riemann, Colloq. Math. 53 (1987),333-335. Zbl0637.10027
  3. [3] K. Hardy, R. H. Hudson, D. Richman and K. S. Williams, Determination of all imaginary cyclic quartic fields with class number 2, Trans. Amer. Math. Soc. 311 (1989), 1-55. Zbl0678.12003
  4. [4] E. Landau, Über Dirichletsche Reihen mit komplexenCharakteren, J. Reine Angew. Math. 157 (1926), 26-32. 
  5. [5] A. J. Lazarus, On the class number and unit index ofsimplest quartic fields, Nagoya Math. J. 121 (1991), 1-13. 
  6. [6] S. Louboutin, Majoration au point 1 des fonctions Lassociées aux caractères de Dirichlet primitifs, ou au caractère d'uneextension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219. Zbl0721.11049
  7. [7] J. M. Masley and H. L. Montgomery, Cyclotomic fields withunique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256. Zbl0335.12013
  8. [8] B. Setzer, The determination of all imaginary, quartic, abelian number fields with class number 1, Math. Comp. 35 (1980),1383-1386. Zbl0455.12004
  9. [9] H. M. Stark, Some effective cases of the Brauer-Siegeltheorem, Invent. Math. 23 (1974), 135-152. 
  10. [10] K. Uchida, Imaginary abelian number fields with classnumber one, Tôkohu Math. J. 24 (1972), 487-499. Zbl0248.12007
  11. [11] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.