Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux

Stéphane Louboutin

Acta Arithmetica (1992)

  • Volume: 62, Issue: 2, page 109-124
  • ISSN: 0065-1036

How to cite

top

Stéphane Louboutin. "Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux." Acta Arithmetica 62.2 (1992): 109-124. <http://eudml.org/doc/206484>.

@article{StéphaneLouboutin1992,
author = {Stéphane Louboutin},
journal = {Acta Arithmetica},
keywords = {lower bounds for ; Dirichlet -function; totally imaginary sextic abelian number fields; class number one; lower bound; relative class number},
language = {fre},
number = {2},
pages = {109-124},
title = {Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux},
url = {http://eudml.org/doc/206484},
volume = {62},
year = {1992},
}

TY - JOUR
AU - Stéphane Louboutin
TI - Minoration au point 1 des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux
JO - Acta Arithmetica
PY - 1992
VL - 62
IS - 2
SP - 109
EP - 124
LA - fre
KW - lower bounds for ; Dirichlet -function; totally imaginary sextic abelian number fields; class number one; lower bound; relative class number
UR - http://eudml.org/doc/206484
ER -

References

top
  1. [1] H. Davenport, Multiplicative Number Theory, Graduate Texts in Math.74, 2nd ed., Springer, 1980. 
  2. [2] H. Delange, Une remarque sur la dérivée logarithmiquede la fonction zêta de Riemann, Colloq. Math. 53 (1987),333-335. Zbl0637.10027
  3. [3] K. Hardy, R. H. Hudson, D. Richman and K. S. Williams, Determination of all imaginary cyclic quartic fields with class number 2, Trans. Amer. Math. Soc. 311 (1989), 1-55. Zbl0678.12003
  4. [4] E. Landau, Über Dirichletsche Reihen mit komplexenCharakteren, J. Reine Angew. Math. 157 (1926), 26-32. 
  5. [5] A. J. Lazarus, On the class number and unit index ofsimplest quartic fields, Nagoya Math. J. 121 (1991), 1-13. 
  6. [6] S. Louboutin, Majoration au point 1 des fonctions Lassociées aux caractères de Dirichlet primitifs, ou au caractère d'uneextension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math. 419 (1991), 213-219. Zbl0721.11049
  7. [7] J. M. Masley and H. L. Montgomery, Cyclotomic fields withunique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256. Zbl0335.12013
  8. [8] B. Setzer, The determination of all imaginary, quartic, abelian number fields with class number 1, Math. Comp. 35 (1980),1383-1386. Zbl0455.12004
  9. [9] H. M. Stark, Some effective cases of the Brauer-Siegeltheorem, Invent. Math. 23 (1974), 135-152. 
  10. [10] K. Uchida, Imaginary abelian number fields with classnumber one, Tôkohu Math. J. 24 (1972), 487-499. Zbl0248.12007
  11. [11] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.