Embeddings of Kronecker modules into the category of prinjective modules and the endomorphism ring problem

Rüdiger Göbel; Daniel Simson

Colloquium Mathematicae (1998)

  • Volume: 75, Issue: 2, page 213-244
  • ISSN: 0010-1354

How to cite

top

Göbel, Rüdiger, and Simson, Daniel. "Embeddings of Kronecker modules into the category of prinjective modules and the endomorphism ring problem." Colloquium Mathematicae 75.2 (1998): 213-244. <http://eudml.org/doc/210540>.

@article{Göbel1998,
author = {Göbel, Rüdiger, Simson, Daniel},
journal = {Colloquium Mathematicae},
keywords = {representations of finite posets; prinjective modules; propartite modules; rigid direct systems; endomorphism ring problem; matrix problems; categories of modules; incidence algebras; posets of finite prinjective type; Kronecker algebras; endomorphism algebras},
language = {eng},
number = {2},
pages = {213-244},
title = {Embeddings of Kronecker modules into the category of prinjective modules and the endomorphism ring problem},
url = {http://eudml.org/doc/210540},
volume = {75},
year = {1998},
}

TY - JOUR
AU - Göbel, Rüdiger
AU - Simson, Daniel
TI - Embeddings of Kronecker modules into the category of prinjective modules and the endomorphism ring problem
JO - Colloquium Mathematicae
PY - 1998
VL - 75
IS - 2
SP - 213
EP - 244
LA - eng
KW - representations of finite posets; prinjective modules; propartite modules; rigid direct systems; endomorphism ring problem; matrix problems; categories of modules; incidence algebras; posets of finite prinjective type; Kronecker algebras; endomorphism algebras
UR - http://eudml.org/doc/210540
ER -

References

top
  1. [1] C. Böttinger and R. Göbel, Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings, J. Pure Appl. Algebra 76 (1991), 121-141. Zbl0759.16006
  2. [2] S. Brenner, Decomposition properties of some small diagrams of modules, in: Symposia Math. 13, Academic Press, London, 1974, 127-141. 
  3. [3] A. L. S. Corner, Endomorphism algebras of large modules with distinguished submodules, J. Algebra 11 (1969), 155-185. Zbl0214.05606
  4. [4] Yu. A. Drozd, Matrix problems and categories of matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 144-153 (in Russian). 
  5. [5] B. Franzen and R. Göbel, The Brenner-Butler-Corner-Theorem and its applications to modules, in: Abelian Group Theory, Gordon and Breach, London, 1986, 209-227. Zbl0667.20045
  6. [6] L. Fuchs, Large indecomposable modules in torsion theories, Aequationes Math. 34 (1987), 106-111. Zbl0631.13010
  7. [7] P. Gabriel, Indecomposable representations II, in: Symposia Math. 11, Academic Press, London, 1973, 81-104. 
  8. [8] R. Göbel and W. May, Four submodules suffice for realizing algebras over commutative rings, J. Pure Appl. Algebra 65 (1990), 29-43. Zbl0716.16015
  9. [9] R. Göbel and W. May, Endomorphism algebras of peak I-spaces over posets of infinite prinjective type, Trans. Amer. Math. Soc. 349 (1997), 3535-3567. Zbl0884.16017
  10. [10] R. Göbel and D. Simson, Rigid families and endomorphism algebras of Kronecker modules, preprint, 1997. Zbl0934.16024
  11. [11] S. Kasjan and D. Simson, Varieties of poset representations and minimal posets of wild prinjective type, in: Proc. Sixth Internat. Conf. Representations of Algebras, CMS Conf. Proc. 14, 1993, 245-284. Zbl0834.16010
  12. [12] S. Kasjan and D. Simson, Fully wild prinjective type of posets and their quadratic forms, J. Algebra 172 (1995), 506-529. Zbl0831.16010
  13. [13] S. Kasjan and D. Simson, A peak reduction functor for socle projective representations, ibid. 187 (1997), 49-70. Zbl0904.16008
  14. [14] S. Kasjan and D. Simson, A subbimodule reduction, a peak reduction functor and tame prinjective type, Bull. Polish Acad. Sci. Math. 45 (1997), 89-107. Zbl0959.16012
  15. [15] J. A. de la Pe na and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753. Zbl0789.16010
  16. [16] C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), 269-302. Zbl0338.16011
  17. [17] C. M. Ringel, Infinite-dimensional representations of finite dimensional hereditary algebras, Symposia Math. 23 (1979), 321-412. 
  18. [18] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984. 
  19. [19] S. Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243-256. Zbl0318.02053
  20. [20] D. Simson, Module categories and adjusted modules over traced rings, Dissertationes Math. 269 (1990). 
  21. [21] D. Simson, Peak reductions and waist reflection functors, Fund. Math. 137 (1991), 115-144. Zbl0780.16009
  22. [22] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, London, 1992. Zbl0818.16009
  23. [23] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 71-103. Zbl0815.16006
  24. [24] D. Simson Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I 321 (1995), 33-38. Zbl0842.16010
  25. [25] D. Simson, Representation embedding problems, categories of extensions and prinjective modules, in: Proc. Seventh Internat. Conf. Representations of Algebras, CMS Conf. Proc. 18, 1996, 601-639. Zbl0929.16014
  26. [26] D. Simson, Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68. Zbl0937.16019
  27. [27] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. Zbl0822.16010
  28. [28] D. Vossieck, Représentations de bifoncteurs et interprétations en termes de modules, C. R. Acad. Sci. Paris Sér. I 307 (1988), 713-716. Zbl0661.16025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.