The Becker-Döring model with diffusion. I. Basic properties of solutions

Philippe Laurençot; Dariusz Wrzosek

Colloquium Mathematicae (1998)

  • Volume: 75, Issue: 2, page 245-269
  • ISSN: 0010-1354

How to cite


Laurençot, Philippe, and Wrzosek, Dariusz. "The Becker-Döring model with diffusion. I. Basic properties of solutions." Colloquium Mathematicae 75.2 (1998): 245-269. <>.

author = {Laurençot, Philippe, Wrzosek, Dariusz},
journal = {Colloquium Mathematicae},
keywords = {system of infinitely many reaction-diffusion equations},
language = {eng},
number = {2},
pages = {245-269},
title = {The Becker-Döring model with diffusion. I. Basic properties of solutions},
url = {},
volume = {75},
year = {1998},

AU - Laurençot, Philippe
AU - Wrzosek, Dariusz
TI - The Becker-Döring model with diffusion. I. Basic properties of solutions
JO - Colloquium Mathematicae
PY - 1998
VL - 75
IS - 2
SP - 245
EP - 269
LA - eng
KW - system of infinitely many reaction-diffusion equations
UR -
ER -


  1. [1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254. 
  2. [2] J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation, J. Statist. Phys. 61 (1990), 203-234. Zbl1217.82050
  3. [3] J. M. Ball and J. Carr, Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 109-116. Zbl0656.58021
  4. [4] J. M. Ball, J. Carr and O. Penrose, The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions, Comm. Math. Phys. 104 (1986), 657-692. Zbl0594.58063
  5. [5] P. Baras, J. C. Hassan et L. Véron, Compacité de l'opérateur définissant la solution d'une équation d'évolution non homogène, C. R. Acad. Sci. Paris Sér. I 284 (1977), 799-802. Zbl0348.47026
  6. [6] P. Bénilan and D. Wrzosek, On an infinite system of reaction-diffusion equations, Adv. Math. Sci. Appl. 7 (1997), 349-364. 
  7. [7] J. F. Collet and F. Poupaud, Existence of solutions to coagulation-fragmentation systems with diffusion, Transport. Theory Statist. Phys. 25 (1996), 503-513. Zbl0870.35117
  8. [8] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs 23, Amer. Math. Soc., Providence, 1968. 
  9. [9] Ph. Laurençot and D. Wrzosek, Fragmentation-diffusion model. Existence of solutions and asymptotic behaviour, Proc. Roy. Soc. Edinburgh Sect. A, to appear. Zbl0912.35031
  10. [10] Ph. Laurençot and D. Wrzosek, The Becker-Döring model with diffusion. II. Long time behaviour, submitted. Zbl0913.35070
  11. [11] R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in: Nonlinear Equations in Applied Science, W. F. Ames and C. Rogers (eds.), Academic Press, Boston, 1992. 
  12. [12] O. Penrose and A. Buhagiar, Kinetics of nucleation in a lattice gas model: microscopic theory and simulation compared, J. Statist. Phys. 30 (1983), 219-241. 
  13. [13] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, Berlin, 1984. Zbl0546.35003
  14. [14] M. Slemrod, Trend to equilibrium in the Becker-Döring cluster equations, Nonlinearity 2 (1989), 429-443. Zbl0709.60528
  15. [15] J. L. Spouge, An existence theorem for the discrete coagulation-fragmentation equations, Math. Proc. Cambridge Philos. Soc. 96 (1984), 351-357. Zbl0541.92029
  16. [16] D. Wrzosek, Existence of solutions for the discrete coagulation-fragmentation model with diffusion, Topol. Methods Nonlinear Anal. 9 (1997), 279-296. Zbl0892.35077
  17. [17] A. Ziabicki, Generalized theory of nucleation kinetics. IV. Nucleation as diffusion in the space of cluster dimensions, positions, orientations and internal structure, J. Chem. Phys. 85 (1986), 3042-3056. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.