Generalized coil enlargements of algebras

Piotr Malicki

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 1, page 57-83
  • ISSN: 0010-1354

How to cite

top

Malicki, Piotr. "Generalized coil enlargements of algebras." Colloquium Mathematicae 76.1 (1998): 57-83. <http://eudml.org/doc/210553>.

@article{Malicki1998,
author = {Malicki, Piotr},
journal = {Colloquium Mathematicae},
keywords = {admissible operations; Auslander-Reiten components; Auslander-Reiten quivers; module categories; generalized coil enlargements},
language = {eng},
number = {1},
pages = {57-83},
title = {Generalized coil enlargements of algebras},
url = {http://eudml.org/doc/210553},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Malicki, Piotr
TI - Generalized coil enlargements of algebras
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 1
SP - 57
EP - 83
LA - eng
KW - admissible operations; Auslander-Reiten components; Auslander-Reiten quivers; module categories; generalized coil enlargements
UR - http://eudml.org/doc/210553
ER -

References

top
  1. [1] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72. Zbl0686.16011
  2. [2] I. Assem and A. Skowroński, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992), 31-61. Zbl0796.16014
  3. [3] I. Assem and A. Skowroński, Multicoil algebras, in: CMS Conf. Proc. 14, 1993, 29-68. Zbl0827.16010
  4. [4] I. Assem and A. Skowroński, Coils and multicoil algebras, in: CMS Conf. Proc. 19, 1996, 1-24. Zbl0849.16015
  5. [5] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19 (1995), 453-479. Zbl0860.16014
  6. [6] K. Bongartz, On a result of Bautista and Smalο on cycles, Comm. Algebra 11 (1983), 2123-2124. Zbl0522.16029
  7. [7] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. Zbl0532.16020
  8. [8] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. Zbl0482.16026
  9. [9] Yu. Drozd, Tame and wild matrix problems, in: Proc. ICRA II (Ottawa, 1979), Lecture Notes in Math. 832, Springer, 1980, 240-258. 
  10. [10] G. D'Este and C. M. Ringel, Coherent tubes, J. Algebra 87 (1984), 150-201. 
  11. [11] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. Zbl0677.16008
  12. [12] J. A. de la Pe na, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. Zbl0647.16021
  13. [13] J. A. de la Pe na and A. Skowroński, Geometric and homological characterizations of polynomial growth strongly simply connected algebras, Invent. Math. 126 (1996), 287-296. Zbl0883.16007
  14. [14] J. A. de la Pe na and B. Tomé, Iterated tubular algebras, J. Pure Appl. Algebra (3) 64 (1990), 303-314. Zbl0704.16006
  15. [15] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  16. [16] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Part 1, Rings and Representations of Algebras, Banach Center Publ. 26, PWN, Warszawa, 1990, 535-568. 
  17. [17] A. Skowroński, Simply connected algebras of polynomial growth, Compositio Math.109 (1997), 99-133. Zbl0889.16004
  18. [18] B. Tomé, Iterated coil enlargements of algebras, Fund. Math. 146 (1995), 251-266. Zbl0866.16007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.