# Iterated coil enlargements of algebras

Fundamenta Mathematicae (1995)

- Volume: 146, Issue: 3, page 251-266
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topTomé, Bertha. "Iterated coil enlargements of algebras." Fundamenta Mathematicae 146.3 (1995): 251-266. <http://eudml.org/doc/212065>.

@article{Tomé1995,

abstract = {Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b) the Tits form $q_Λ$ of Λ is weakly non-negative, (c) Λ is an iterated coil enlargement},

author = {Tomé, Bertha},

journal = {Fundamenta Mathematicae},

keywords = {finite-dimensional basic connected algebras; categories of finitely generated right modules; indecomposable projective modules; preprojective components; standard coils; Tits forms; iterated coil enlargements},

language = {eng},

number = {3},

pages = {251-266},

title = {Iterated coil enlargements of algebras},

url = {http://eudml.org/doc/212065},

volume = {146},

year = {1995},

}

TY - JOUR

AU - Tomé, Bertha

TI - Iterated coil enlargements of algebras

JO - Fundamenta Mathematicae

PY - 1995

VL - 146

IS - 3

SP - 251

EP - 266

AB - Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b) the Tits form $q_Λ$ of Λ is weakly non-negative, (c) Λ is an iterated coil enlargement

LA - eng

KW - finite-dimensional basic connected algebras; categories of finitely generated right modules; indecomposable projective modules; preprojective components; standard coils; Tits forms; iterated coil enlargements

UR - http://eudml.org/doc/212065

ER -

## References

top- [1] I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305-331. Zbl0696.16023
- [2] I. Assem and A. Skowroński, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992), 31-61. Zbl0796.16014
- [3] I. Assem and A. Skowroński, Multicoil algebras, in: Proc. ICRA VI (Ottawa, 1992), Canad. Math. Soc. Conf. Proc. 14, 1993, 29-68. Zbl0827.16010
- [4] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math., to appear. Zbl0860.16014
- [5] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454. Zbl0457.16017
- [6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. Zbl0532.16020
- [7] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1981), 331-378. Zbl0482.16026
- [8] Yu. Drozd, Tame and wild matrix problems, in: Proc. ICRA II (Ottawa, 1979), Lecture Notes in Math. 832, Springer, Berlin, 1980, 240-258.
- [9] J. A. de la Pe na, On the representation type of one-point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. Zbl0647.16021
- [10] J. A. de la Pe na and B. Tomé, Iterated tubular algebras, J. Pure Appl. Algebra 64 (1990), 303-314. Zbl0704.16006
- [11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
- [12] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 535-568.
- [13] A. Skowroński, Tame algebras with simply connected Galois coverings, in preparation. Zbl0876.16007
- [14] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra, to appear. Zbl0841.16020
- [15] A. Skowroński, Cycles in module categories, in: Proc. Canad. Math. Soc. Annual Seminar-NATO Advanced Research Workshop on Representations of Algebras and Related Topics (Ottawa 1992). Zbl0819.16013

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.