Iterated coil enlargements of algebras

Bertha Tomé

Fundamenta Mathematicae (1995)

  • Volume: 146, Issue: 3, page 251-266
  • ISSN: 0016-2736

Abstract

top
Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b) the Tits form q Λ of Λ is weakly non-negative, (c) Λ is an iterated coil enlargement

How to cite

top

Tomé, Bertha. "Iterated coil enlargements of algebras." Fundamenta Mathematicae 146.3 (1995): 251-266. <http://eudml.org/doc/212065>.

@article{Tomé1995,
abstract = {Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b) the Tits form $q_Λ$ of Λ is weakly non-negative, (c) Λ is an iterated coil enlargement},
author = {Tomé, Bertha},
journal = {Fundamenta Mathematicae},
keywords = {finite-dimensional basic connected algebras; categories of finitely generated right modules; indecomposable projective modules; preprojective components; standard coils; Tits forms; iterated coil enlargements},
language = {eng},
number = {3},
pages = {251-266},
title = {Iterated coil enlargements of algebras},
url = {http://eudml.org/doc/212065},
volume = {146},
year = {1995},
}

TY - JOUR
AU - Tomé, Bertha
TI - Iterated coil enlargements of algebras
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 3
SP - 251
EP - 266
AB - Let Λ be a finite-dimensional, basic and connected algebra over an algebraically closed field, and mod Λ be the category of finitely generated right Λ-modules. We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie either in a preprojective component without injective modules or in a standard coil, and the standard coils containing projectives are ordered. We prove that for such an algebra Λ the following conditions are equivalent: (a) Λ is tame, (b) the Tits form $q_Λ$ of Λ is weakly non-negative, (c) Λ is an iterated coil enlargement
LA - eng
KW - finite-dimensional basic connected algebras; categories of finitely generated right modules; indecomposable projective modules; preprojective components; standard coils; Tits forms; iterated coil enlargements
UR - http://eudml.org/doc/212065
ER -

References

top
  1. [1] I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305-331. Zbl0696.16023
  2. [2] I. Assem and A. Skowroński, Indecomposable modules over multicoil algebras, Math. Scand. 71 (1992), 31-61. Zbl0796.16014
  3. [3] I. Assem and A. Skowroński, Multicoil algebras, in: Proc. ICRA VI (Ottawa, 1992), Canad. Math. Soc. Conf. Proc. 14, 1993, 29-68. Zbl0827.16010
  4. [4] I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math., to appear. Zbl0860.16014
  5. [5] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454. Zbl0457.16017
  6. [6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. Zbl0532.16020
  7. [7] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1981), 331-378. Zbl0482.16026
  8. [8] Yu. Drozd, Tame and wild matrix problems, in: Proc. ICRA II (Ottawa, 1979), Lecture Notes in Math. 832, Springer, Berlin, 1980, 240-258. 
  9. [9] J. A. de la Pe na, On the representation type of one-point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. Zbl0647.16021
  10. [10] J. A. de la Pe na and B. Tomé, Iterated tubular algebras, J. Pure Appl. Algebra 64 (1990), 303-314. Zbl0704.16006
  11. [11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984. 
  12. [12] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 535-568. 
  13. [13] A. Skowroński, Tame algebras with simply connected Galois coverings, in preparation. Zbl0876.16007
  14. [14] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra, to appear. Zbl0841.16020
  15. [15] A. Skowroński, Cycles in module categories, in: Proc. Canad. Math. Soc. Annual Seminar-NATO Advanced Research Workshop on Representations of Algebras and Related Topics (Ottawa 1992). Zbl0819.16013

NotesEmbed ?

top

You must be logged in to post comments.