Minimal bipartite algebras of infinite prinjective type with prin-preprojective component

Stanisław Kasjan

Colloquium Mathematicae (1998)

  • Volume: 76, Issue: 2, page 295-317
  • ISSN: 0010-1354

How to cite

top

Kasjan, Stanisław. "Minimal bipartite algebras of infinite prinjective type with prin-preprojective component." Colloquium Mathematicae 76.2 (1998): 295-317. <http://eudml.org/doc/210567>.

@article{Kasjan1998,
author = {Kasjan, Stanisław},
journal = {Colloquium Mathematicae},
keywords = {prin-critical algebras; bipartite algebras; prinjective modules; representation type; preprojective components; tame concealed algebras; tubular families},
language = {eng},
number = {2},
pages = {295-317},
title = {Minimal bipartite algebras of infinite prinjective type with prin-preprojective component},
url = {http://eudml.org/doc/210567},
volume = {76},
year = {1998},
}

TY - JOUR
AU - Kasjan, Stanisław
TI - Minimal bipartite algebras of infinite prinjective type with prin-preprojective component
JO - Colloquium Mathematicae
PY - 1998
VL - 76
IS - 2
SP - 295
EP - 317
LA - eng
KW - prin-critical algebras; bipartite algebras; prinjective modules; representation type; preprojective components; tame concealed algebras; tubular families
UR - http://eudml.org/doc/210567
ER -

References

top
  1. [1] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. 
  2. [2] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469. Zbl0532.16020
  3. [3] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 177-136. Zbl0537.16024
  4. [4] D Yu. A. Drozd, Matrix problems and the category of matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1978), 144-153 (in Russian). 
  5. [5] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. Zbl0516.16023
  6. [6] H.-J. von Höhne, On weakly non-negative unit forms and tame algebras, Proc. London Math. Soc. 73 (1996), 47-67. Zbl0869.16011
  7. [7] H.-J. von Höhne and D. Simson, Bipartite posets of finite prinjective type, J. Algebra (1998), in press. Zbl0921.16004
  8. [8] S. Kasjan, On prinjective modules, tameness and Tits form, Bull. Polish Acad. Sci. Math. 41 (1993), 327-341. Zbl0810.16014
  9. [9] S. Kasjan and D. Simson, Fully wild prinjective type of posets and their quadratic forms, J. Algebra 172 (1995), 506-529. Zbl0831.16010
  10. [10] O S. A. Ovsienko, Integral weakly positive unit forms, in: Schur Matrix Problems and Quadratic Forms, Kiev, 1978, 3-17 (in Russian). 
  11. [11] J. A. de la Pe na, Quadratic forms and the representation type of an algebra, SFB 343, Diskrete Strukturen in der Mathematik, preprint 90-003, Bielefeld, 1990. 
  12. [12] J. A. de la Pe na, Coxeter transformations and the representation theory of algebras, in: Finite-Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 424, 1994, 223-253. 
  13. [13] J. A. de la Pena and D. Simson, Prinjective modules, reflection functors, quadratic forms, and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753. Zbl0789.16010
  14. [14] C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), 269-302. Zbl0338.16011
  15. [15] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  16. [16] C. M. Ringel, The spectral radius of the Coxeter transformations for a generalized Cartan matrix, Math. Ann. 300 (1994), 331-339. Zbl0819.15008
  17. [17] D. Simson, Moduled categories and adjusted modules over traced rings, Dissertationes Math. 269 (1990). 
  18. [18] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992. Zbl0818.16009
  19. [19] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 77-103. Zbl0815.16006
  20. [20] D. Simson, Representation embedding problems, categories of extensions and prinjective modules, in: Proc. Seventh Internat. Conf. on Representations of Algebras, Canad. Math. Soc. Conf. Proc. 18, 1996, 601-639. Zbl0929.16014
  21. [21] D. Simson, Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), 31-68. Zbl0937.16019
  22. [22] D. Simson, Three-partite subamalgams of tiled orders of finite lattice type, J. Pure Appl. Algebra (1998), in press. Zbl0928.16014
  23. [23] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 518-543. Zbl0828.16011
  24. [24] D. Vossieck, Représentations de bifoncteurs et interprétations en termes de modules, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 713-716. Zbl0661.16025
  25. [25] T. Weichert, Darstellungstheorie von Algebren mit projektivem Sockel, Doctoral thesis, Universität Stuttgart, 1989. Zbl0677.16017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.