Coordinates of maximal roots of weakly non-negative unit forms

P. Dräxler; N. Golovachtchuk; S. Ovsienko; J. de la Pena

Colloquium Mathematicae (1998)

  • Volume: 78, Issue: 2, page 163-193
  • ISSN: 0010-1354

How to cite

top

Dräxler, P., et al. "Coordinates of maximal roots of weakly non-negative unit forms." Colloquium Mathematicae 78.2 (1998): 163-193. <http://eudml.org/doc/210609>.

@article{Dräxler1998,
author = {Dräxler, P., Golovachtchuk, N., Ovsienko, S., de la Pena, J.},
journal = {Colloquium Mathematicae},
keywords = {positive roots; tame algebras; quadratic forms; weakly nonnegative unit forms; Euler characteristics; roots; Euler forms; representation types; directing modules; path algebras},
language = {eng},
number = {2},
pages = {163-193},
title = {Coordinates of maximal roots of weakly non-negative unit forms},
url = {http://eudml.org/doc/210609},
volume = {78},
year = {1998},
}

TY - JOUR
AU - Dräxler, P.
AU - Golovachtchuk, N.
AU - Ovsienko, S.
AU - de la Pena, J.
TI - Coordinates of maximal roots of weakly non-negative unit forms
JO - Colloquium Mathematicae
PY - 1998
VL - 78
IS - 2
SP - 163
EP - 193
LA - eng
KW - positive roots; tame algebras; quadratic forms; weakly nonnegative unit forms; Euler characteristics; roots; Euler forms; representation types; directing modules; path algebras
UR - http://eudml.org/doc/210609
ER -

References

top
  1. [Bo] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), 461-469. Zbl0532.16020
  2. [BG] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. Zbl0482.16026
  3. [DP] A. Dean and J. A. de la Pena, Algorithms for weakly non-negative quadratic forms, Linear Algebra Appl. 235 (1996), 35-46. Zbl0848.65031
  4. [D-Z] P. Dräxler, Yu. A. Drozd, N. S. Golovachtchuk, S. A. Ovsienko and M. M. Zeldych, Towards classification of sincere weakly positive unit forms, European J. Combin. 16 (1995), 1-16. Zbl0830.16013
  5. [Ga] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103. Zbl0232.08001
  6. [HP] D. Happel and J. A. de la Pena, Quadratic forms with a maximal sincere root, in: CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 307-315. Zbl0857.16018
  7. [Hu] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, New York, 1990. 
  8. [Ka] V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1972. 
  9. [Ov1] S. Ovsienko, Integral weakly positive forms, in: Schur Matrix Problems and Quadratic Forms, Kiev, 1978, 3-17. 
  10. [Ov2] S. Ovsienko, Maximal roots of sincere weakly nonnegative forms, lecture at the workshop on Quadratic Forms in the Representation Theory of Finite-Dimensional Algebras, Bielefeld, November 9-12, 1995. 
  11. [Pe1] J. A. de la Pena, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. Zbl0647.16021
  12. [Pe2] J. A. de la Pena, Algebras with hypercritical Tits form, in: Topics in Algebra, Banach Center Publ. 26, part I, PWN, Warszawa, 1990, 353-369. 
  13. [Pe3] J. A. de la Pena, Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171-185. Zbl0808.16018
  14. [Pe4] J. A. de la Pena, The families of two-parametric tame algebras with sincere directing modules, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 361-392. Zbl0799.16016
  15. [Ri] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  16. [Si] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992. Zbl0818.16009
  17. [Sl] P. Slodowy, Beyond Kac-Moody algebras, and inside, in: Lie Algebras and Related Topics, CMS Conf. Proc. 5, Amer. Math. Soc., 1986, 361-370. 
  18. [Za] A. G. Zavadskiĭ, Sincere partially ordered sets of finite growth, in: Mat. Inst. Akad. Nauk USSR, preprint 81.27, Kiev, 1981, 30-42 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.