Algebras whose Euler form is non-negative

M. Barot; J. de la Peña

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 1, page 119-131
  • ISSN: 0010-1354

How to cite

top

Barot, M., and de la Peña, J.. "Algebras whose Euler form is non-negative." Colloquium Mathematicae 79.1 (1999): 119-131. <http://eudml.org/doc/210620>.

@article{Barot1999,
author = {Barot, M., de la Peña, J.},
journal = {Colloquium Mathematicae},
keywords = {Dynkin graphs; tree algebras; concealed algebras; polynomial growth; derived categories; derived equivalences; Euler quadratic forms; basic finite dimensional algebras; Grothendieck groups; simple modules; strongly simply connected poset algebras; incidence algebras},
language = {eng},
number = {1},
pages = {119-131},
title = {Algebras whose Euler form is non-negative},
url = {http://eudml.org/doc/210620},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Barot, M.
AU - de la Peña, J.
TI - Algebras whose Euler form is non-negative
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 1
SP - 119
EP - 131
LA - eng
KW - Dynkin graphs; tree algebras; concealed algebras; polynomial growth; derived categories; derived equivalences; Euler quadratic forms; basic finite dimensional algebras; Grothendieck groups; simple modules; strongly simply connected poset algebras; incidence algebras
UR - http://eudml.org/doc/210620
ER -

References

top
  1. [1] I. Assem and A. Skowroński, Quadratic forms and iterated tilted algebras, J. Algebra 128 (1990), 55-85. Zbl0686.16020
  2. [2] M. Barot and H. Lenzing, One-point extensions and derived equivalence, to appear. 
  3. [3] M. Barot and J. A. de la Peña, Derived tubular strongly simply connected algebras, Proc. Amer. Math. Soc., to appear. Zbl0940.16008
  4. [4] M. Barot and J. A. de la Peña, Derived tubularity: A computational approach, in: Proc. Euroconference on Computer Algebra for Representations of Groups and Algebras, to appear. Zbl1058.16504
  5. [5] M. Barot and J. A. de la Peña, The Dynkin-type of a non-negative unit form, to appear. Zbl1073.15531
  6. [6] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27 (1983), 212-220. Zbl0511.16022
  7. [7] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565. Zbl0804.16017
  8. [8] P. Dräxler and J. A. de la Peña, Tree algebras with non-negative Tits form, preprint, México, 1996. Zbl0964.16013
  9. [9] C. Geiß and J. A. de la Peña, Algebras derived tame to semichain poset algebras, in preparation. 
  10. [10] P. Gabriel, B. Keller and A. V. Roiter, Algebra VIII. Representations of Finite-Dimensional Algebras, Encyclopaedia Math. Sci. 73, Springer, 1992. 
  11. [11] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. Zbl0635.16017
  12. [12] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Representation Theory I, Lecture Notes in Math. 1177, Springer, 1984, 156-180. 
  13. [13] S. A. Ovsienko, Integer weakly positive forms, in: Schurian Matrix Problems and Quadratic Forms, Kiev, 1978, 3-17. 
  14. [14] J. A. de la Peña, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. Zbl0647.16021
  15. [15] J. A. de la Peña, On the corank of the Tits form of a tame algebra, J. Pure Appl. Algebra 107 (1996), 89-105. Zbl0851.16014
  16. [16] J. A. de la Peña, Derived-tame algebras, preprint, México, 1998. Zbl0932.16005
  17. [17] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  18. [18] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: CMS Proc. 14, Amer. Math. Soc., 1993, 431-447. Zbl0806.16012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.