Algebras whose Euler form is non-negative
Colloquium Mathematicae (1999)
- Volume: 79, Issue: 1, page 119-131
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBarot, M., and de la Peña, J.. "Algebras whose Euler form is non-negative." Colloquium Mathematicae 79.1 (1999): 119-131. <http://eudml.org/doc/210620>.
@article{Barot1999,
author = {Barot, M., de la Peña, J.},
journal = {Colloquium Mathematicae},
keywords = {Dynkin graphs; tree algebras; concealed algebras; polynomial growth; derived categories; derived equivalences; Euler quadratic forms; basic finite dimensional algebras; Grothendieck groups; simple modules; strongly simply connected poset algebras; incidence algebras},
language = {eng},
number = {1},
pages = {119-131},
title = {Algebras whose Euler form is non-negative},
url = {http://eudml.org/doc/210620},
volume = {79},
year = {1999},
}
TY - JOUR
AU - Barot, M.
AU - de la Peña, J.
TI - Algebras whose Euler form is non-negative
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 1
SP - 119
EP - 131
LA - eng
KW - Dynkin graphs; tree algebras; concealed algebras; polynomial growth; derived categories; derived equivalences; Euler quadratic forms; basic finite dimensional algebras; Grothendieck groups; simple modules; strongly simply connected poset algebras; incidence algebras
UR - http://eudml.org/doc/210620
ER -
References
top- [1] I. Assem and A. Skowroński, Quadratic forms and iterated tilted algebras, J. Algebra 128 (1990), 55-85. Zbl0686.16020
- [2] M. Barot and H. Lenzing, One-point extensions and derived equivalence, to appear.
- [3] M. Barot and J. A. de la Peña, Derived tubular strongly simply connected algebras, Proc. Amer. Math. Soc., to appear. Zbl0940.16008
- [4] M. Barot and J. A. de la Peña, Derived tubularity: A computational approach, in: Proc. Euroconference on Computer Algebra for Representations of Groups and Algebras, to appear. Zbl1058.16504
- [5] M. Barot and J. A. de la Peña, The Dynkin-type of a non-negative unit form, to appear. Zbl1073.15531
- [6] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. (2) 27 (1983), 212-220. Zbl0511.16022
- [7] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565. Zbl0804.16017
- [8] P. Dräxler and J. A. de la Peña, Tree algebras with non-negative Tits form, preprint, México, 1996. Zbl0964.16013
- [9] C. Geiß and J. A. de la Peña, Algebras derived tame to semichain poset algebras, in preparation.
- [10] P. Gabriel, B. Keller and A. V. Roiter, Algebra VIII. Representations of Finite-Dimensional Algebras, Encyclopaedia Math. Sci. 73, Springer, 1992.
- [11] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. Zbl0635.16017
- [12] D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Representation Theory I, Lecture Notes in Math. 1177, Springer, 1984, 156-180.
- [13] S. A. Ovsienko, Integer weakly positive forms, in: Schurian Matrix Problems and Quadratic Forms, Kiev, 1978, 3-17.
- [14] J. A. de la Peña, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. Zbl0647.16021
- [15] J. A. de la Peña, On the corank of the Tits form of a tame algebra, J. Pure Appl. Algebra 107 (1996), 89-105. Zbl0851.16014
- [16] J. A. de la Peña, Derived-tame algebras, preprint, México, 1998. Zbl0932.16005
- [17] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [18] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: CMS Proc. 14, Amer. Math. Soc., 1993, 431-447. Zbl0806.16012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.