The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Algebras whose Euler form is non-negative”

Tame triangular matrix algebras

Zbigniew Leszczyński, Andrzej Skowroński (2000)

Colloquium Mathematicae

Similarity:

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Strongly simply connected coil algebras

Flávio U. Coelho, Ma. I. R. Martins, Bertha Tomé (2004)

Colloquium Mathematicae

Similarity:

We study the simple connectedness and strong simple connectedness of the following classes of algebras: (tame) coil enlargements of tame concealed algebras and n-iterated coil enlargement algebras.

Left sections and the left part of an artin algebra

Ibrahim Assem (2009)

Colloquium Mathematicae

Similarity:

We define a notion of left section in an Auslander-Reiten component, by weakening one of the axioms for sections. We derive a generalisation of the Liu-Skowroński criterion for tilted algebras, then apply our results to describe the Auslander-Reiten components lying in the left part of an artin algebra.

On domestic algebras of semiregular type

Alicja Jaworska-Pastuszak, Andrzej Skowroński (2013)

Colloquium Mathematicae

Similarity:

We describe the structure of finite-dimensional algebras of domestic representation type over an algebraically closed field whose Auslander-Reiten quiver consists of generalized standard and semiregular components. Moreover, we prove that this class of algebras contains all special biserial algebras whose Auslander-Reiten quiver consists of semiregular components.

On wings of the Auslander-Reiten quivers of selfinjective algebras

Marta Kwiecień, Andrzej Skowroński (2005)

Colloquium Mathematicae

Similarity:

We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.

Directing components for quasitilted algebras

Flávio Coelho (1999)

Colloquium Mathematicae

Similarity:

We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.

On minimal non-tilted algebras

Flávio U. Coelho, José A. de la Peña, Sonia Trepode (2008)

Colloquium Mathematicae

Similarity:

A minimal non-tilted triangular algebra such that any proper semiconvex subcategory is tilted is called a tilt-semicritical algebra. We study the tilt-semicritical algebras which are quasitilted or one-point extensions of tilted algebras of tame hereditary type. We establish inductive procedures to decide whether or not a given strongly simply connected algebra is tilted.