Uniform boundary stabilization of a thermoelastic bar with a nonlinear weak damping

Mohammed Aassila

Colloquium Mathematicae (1999)

  • Volume: 79, Issue: 1, page 63-70
  • ISSN: 0010-1354

How to cite

top

Aassila, Mohammed. "Uniform boundary stabilization of a thermoelastic bar with a nonlinear weak damping." Colloquium Mathematicae 79.1 (1999): 63-70. <http://eudml.org/doc/210627>.

@article{Aassila1999,
author = {Aassila, Mohammed},
journal = {Colloquium Mathematicae},
language = {eng},
number = {1},
pages = {63-70},
title = {Uniform boundary stabilization of a thermoelastic bar with a nonlinear weak damping},
url = {http://eudml.org/doc/210627},
volume = {79},
year = {1999},
}

TY - JOUR
AU - Aassila, Mohammed
TI - Uniform boundary stabilization of a thermoelastic bar with a nonlinear weak damping
JO - Colloquium Mathematicae
PY - 1999
VL - 79
IS - 1
SP - 63
EP - 70
LA - eng
UR - http://eudml.org/doc/210627
ER -

References

top
  1. [1] Aassila M., Nouvelle approche à la stabilisation forte des systèmes distribués, C. R. Acad. Sci. Paris 324 (1997), 43-48. 
  2. [2] Aassila M. , Strong asymptotic stability for n-dimensional thermoelasticity systems, Colloq. Math. 77 (1998), 133-139. Zbl0958.35012
  3. [3] Ammar Khodja F., Benabdallah A. et Teniou D., Stabilisation d'un système similaire à celui de la thermoélasticité, C. R. Acad. Sci. Paris 322 (1996), 551-556. Zbl0847.35015
  4. [4] Burns J., Liu Z. and Zheng S., On the energy decay of a thermoelastic bar, J. Anal. Math. Appl. 179 (1993), 574-591. Zbl0803.35150
  5. [5] Dafermos C. M., On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rational Mech. Anal. 29 (1968), 241-271. Zbl0183.37701
  6. [6] Gibson J. S., Rosen I. G. and Tao G., Approximation in control of thermolastic systems, SIAM J. Control Optim. 30 (1992), 1163-1189. Zbl0762.93051
  7. [7] Hansen S. W., Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl. 167 (1992), 429-442. Zbl0755.73012
  8. [8] Huang F. L., Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations 1 (1985), 43-48. 
  9. [9] Jiang S., Global existence of smooth solutions in one-dimensional nonlinear thermoelasticity, Proc. Roy. Soc. Edinburgh 115 (1990), 257-274. Zbl0723.35044
  10. [10] Jiang S. , Global solution of the Neumann problem in one-dimensional nonlinear thermoelasticity, Nonlinear Anal. 19 (1992), 107-121. Zbl0770.73009
  11. [11] Kim J. U., On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal. 23 (1992), 889-899. Zbl0755.73013
  12. [12] Komornik V., Exact Controllability and Stabilization, the Multiplier Method, Masson, Paris, 1994. Zbl0937.93003
  13. [13] Komornik V. and Zuazua E., A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69 (1990), 33-54. Zbl0636.93064
  14. [14] Liu Z. Y. and Zheng S., Exponential stability of semi-group associated with thermoelastic system, Quart. Appl. Math. 51 (1993), 535-545. Zbl0803.35014
  15. [15] Muñoz Rivera J. E., Energy decay rate in linear thermoelasticity, Funkcial. Ekvac. 35 (1992), 19-30. Zbl0838.73006
  16. [16] Ponce G. and Racke R., Global existence of small solutions to the initial value problem for nonlinear thermoelasticity, J. Differential Equations 87 (1990), 70-83. Zbl0725.35065
  17. [17] Racke R. and Shibata Y., Global smooth solutions and asymptotic stability in one-dimensional thermoelasticity, Arch. Rational Mech. Anal. 116 (1992), 1-34. Zbl0756.73012
  18. [18] Shibata Y., Neumann problem for one-dimensional nonlinear thermoelasticity, in: Banach Center Publ. 27, Inst. Math., Polish Acad. Sci., 1990, 457-480. Zbl0802.35147
  19. [19] Slemrod M., Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity, Arch. Rational Mech. Anal. 76 (1981), 97-133. Zbl0481.73009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.