Page 1

Displaying 1 – 17 of 17

Showing per page

Boundary feedback stabilization of a three-layer sandwich beam : Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Comportamiento asintótico de las ecuaciones de la termoelasticidad generalizada.

Alberto Falqués Serra (1982)

Stochastica

In this paper it is first shown that the linear evolution equations for a generalized thermoelastic solid generate a C0 semigroup. Next an analysis of the long time evolution behaviour yields the some results known for classical thermoelasticity: generically, the natural state is asymptotically stable.

Effects of In-plane Elastic Stress and Normal External Stress on Viscoelastic Thin Film Stability

F. Closa, F. Ziebert, E. Raphaël (2012)

Mathematical Modelling of Natural Phenomena

Motivated by recent experiments on the electro-hydrodynamic instability of spin-cast polymer films, we study the undulation instability of a thin viscoelastic polymer film under in-plane stress and in the presence of either a close by contactor or an electric field, both inducing a normal stress on the film surface. We find that the in-plane stress affects both the typical timescale of the instability and the unstable wavelengths. The film stability...

Exponential decay to partially thermoelastic materials

Jaime E. Muñoz Rivera, Vanilde Bisognin, Eleni Bisognin (2002)

Bollettino dell'Unione Matematica Italiana

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.

Modeling the tip-sample interaction in atomic force microscopy with Timoshenko beam theory

Julio R. Claeyssen, Teresa Tsukazan, Leticia Tonetto, Daniela Tolfo (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

A matrix framework is developed for single and multispan micro-cantilevers Timoshenko beam models of use in atomic force microscopy (AFM). They are considered subject to general forcing loads and boundary conditions for modeling tipsample interaction. Surface effects are considered in the frequency analysis of supported and cantilever microbeams. Extensive use is made of a distributed matrix fundamental response that allows to determine forced responses through convolution and to absorb non-homogeneous...

On linear versus nonlinear flow rules in strain localization analysis

Giorgio Borré, Giulio Maier (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This note contains some remarks on the analysis of bifurcation phenomena, specifically strain localization (onset of a strain rate discontinuity), in small-deformation elastoplasticity. Nonassociative flow rules are allowed for to cover constitutive models frequently adopted for frictional (and softening) materials such as concrete. The conventional derivation of the localization criterion resting on an incrementally linear "comparison material" is critically reviewed and compared to the criterion...

The stability study of a plane engine

Rafał Kołodziej, Tomasz Nowicki (2000)

Applicationes Mathematicae

We study the dynamical properties of a plane engine vibrations modelled by a system of ODE.

Currently displaying 1 – 17 of 17

Page 1