Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces

Philippe Jaming

Colloquium Mathematicae (1999)

  • Volume: 80, Issue: 1, page 63-82
  • ISSN: 0010-1354

Abstract

top
We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space n . We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball n . We then study the Hardy spaces H p ( n ) , 0

How to cite

top

Jaming, Philippe. "Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces." Colloquium Mathematicae 80.1 (1999): 63-82. <http://eudml.org/doc/210706>.

@article{Jaming1999,
abstract = {We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space $_n$. We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball $_n$. We then study the Hardy spaces $H^p(_n)$, 0},
author = {Jaming, Philippe},
journal = {Colloquium Mathematicae},
keywords = {Hardy spaces; atomic decomposition; real hyperbolic ball; boundary values; harmonic functions; Laplace-Beltrami operator},
language = {eng},
number = {1},
pages = {63-82},
title = {Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces},
url = {http://eudml.org/doc/210706},
volume = {80},
year = {1999},
}

TY - JOUR
AU - Jaming, Philippe
TI - Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces
JO - Colloquium Mathematicae
PY - 1999
VL - 80
IS - 1
SP - 63
EP - 82
AB - We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space $_n$. We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball $_n$. We then study the Hardy spaces $H^p(_n)$, 0
LA - eng
KW - Hardy spaces; atomic decomposition; real hyperbolic ball; boundary values; harmonic functions; Laplace-Beltrami operator
UR - http://eudml.org/doc/210706
ER -

References

top
  1. [1] P. Ahern, J. Bruna and C. Cascante, H p -theory for generalized m a t h c a l M -harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), 103-145. Zbl0866.32007
  2. [2] E. P. van den Ban and H. Schlichtkrull, Assymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math. 380 (1987), 108-165. Zbl0631.58028
  3. [3] A. Bonami, J. Bruna and S. Grellier, On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball, Proc. London Math. Soc. 77 (1998), 665-696. Zbl0904.31007
  4. [4] L. Colzani, Hardy spaces on unit spheres, Boll. Un. Mat. Ital. C (6) 4 (1985), 219-244. Zbl0585.42021
  5. [5] A. Erdélyi et al. (eds.), Higher Transcendental Functions I, McGraw-Hill, 1953. Zbl0051.30303
  6. [6] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  7. [7] J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45 (1978), 815-845. Zbl0403.32006
  8. [8] P. Jaming, Trois problèmes d'analyse harmonique, PhD thesis, Université d'Orlé- ans, 1998. 
  9. [9] S. G. Krantz and S. Y. Li, On decomposition theorems for Hardy spaces on domains in n and applications, J. Fourier Anal. Appl. 2 (1995), 65-107. Zbl0886.32003
  10. [10] J. B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, J. Funct. Anal. 29 (1978), 287-307. Zbl0398.43010
  11. [11] K. Minemura, Harmonic functions on real hyperbolic spaces, Hiroshima Math. J. 3 (1973), 121-151. Zbl0274.31004
  12. [12] K. Minemura, Eigenfunctions of the Laplacian on a real hyperbolic spaces, J. Math. Soc. Japan 27 (1975), 82-105. Zbl0292.35023
  13. [13] H. Samii, Les transformations de Poisson dans la boule hyperbolique, PhD thesis, Université Nancy 1, 1982. 
  14. [14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.