Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces
Colloquium Mathematicae (1999)
- Volume: 80, Issue: 1, page 63-82
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Ahern, J. Bruna and C. Cascante, -theory for generalized -harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), 103-145. Zbl0866.32007
- [2] E. P. van den Ban and H. Schlichtkrull, Assymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math. 380 (1987), 108-165. Zbl0631.58028
- [3] A. Bonami, J. Bruna and S. Grellier, On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball, Proc. London Math. Soc. 77 (1998), 665-696. Zbl0904.31007
- [4] L. Colzani, Hardy spaces on unit spheres, Boll. Un. Mat. Ital. C (6) 4 (1985), 219-244. Zbl0585.42021
- [5] A. Erdélyi et al. (eds.), Higher Transcendental Functions I, McGraw-Hill, 1953. Zbl0051.30303
- [6] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [7] J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45 (1978), 815-845. Zbl0403.32006
- [8] P. Jaming, Trois problèmes d'analyse harmonique, PhD thesis, Université d'Orlé- ans, 1998.
- [9] S. G. Krantz and S. Y. Li, On decomposition theorems for Hardy spaces on domains in and applications, J. Fourier Anal. Appl. 2 (1995), 65-107. Zbl0886.32003
- [10] J. B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, J. Funct. Anal. 29 (1978), 287-307. Zbl0398.43010
- [11] K. Minemura, Harmonic functions on real hyperbolic spaces, Hiroshima Math. J. 3 (1973), 121-151. Zbl0274.31004
- [12] K. Minemura, Eigenfunctions of the Laplacian on a real hyperbolic spaces, J. Math. Soc. Japan 27 (1975), 82-105. Zbl0292.35023
- [13] H. Samii, Les transformations de Poisson dans la boule hyperbolique, PhD thesis, Université Nancy 1, 1982.
- [14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501