Displaying similar documents to “Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces”

Harmonic functions on classical rank one balls

Philippe Jaming (2001)

Bollettino dell'Unione Matematica Italiana

Similarity:

In questo articolo studieremo le relazioni fra le funzioni armoniche nella palla iperbolica (sia essa reale, complessa o quaternionica), le funzione armoniche euclidee in questa palla, e le funzione pluriarmoniche sotto certe condizioni di crescita. In particolare, estenderemo al caso quaternionico risultati anteriori dell'autore (nel caso reale), e di A. Bonami, J. Bruna e S. Grellier (nel caso complesso).

p -spaces of harmonic functions

Linda Lumer-Naïm (1967)

Annales de l'institut Fourier

Similarity:

Sous les hypothèses standard de l’axiomatique Brelot, étude de classes de fonctions harmoniques complexes définies comme les classes de Hardy classiques. Caractérisation comme solutions de problèmes de Dirichlet avec la frontière minimale, les filtres fins, et données-frontière dans L p , pour 1 < p + , comme intégrales de mesures complexes finies sur la frontière minimale, pour p = 1 . Existence presque-partout à la frontière minimale d’une limite fine finie L p . Application à deux théorèmes du type...

p -harmonic measure is not additive on null sets

José G. Llorente, Juan J. Manfredi, Jang-Mei Wu (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

When 1 < p < and p 2 the p -harmonic measure on the boundary of the half plane + 2 is not additive on null sets. In fact, there are finitely many sets E 1 , E 2 ,..., E κ in , of p -harmonic measure zero, such that E 1 E 2 . . . E κ = .

On the axiomatic of harmonic functions I

Corneliu Constantinescu, A. Cornea (1963)

Annales de l'institut Fourier

Similarity:

On présente quelques remarques sur l’axiomatique des fonctions harmoniques de M. Brelot. Ainsi, on montre qu’il est possible de remplacer dans l’axiome 3 l’ensemble ordonné filtrant des fonctions harmoniques par une suite monotone, et, s’il existe une fonction surharmonique positive alors : a) l’espace est la réunion d’un fermé polaire et d’un ouvert σ -compact ; b) l’espace possède une base dénombrable s’il est localement à base dénombrable ; c) l’ensemble des composants...

On the existence of weighted boundary limits of harmonic functions

Yoshihiro Mizuta (1990)

Annales de l'institut Fourier

Similarity:

We study the existence of tangential boundary limits for harmonic functions in a Lipschitz domain, which belong to Orlicz-Sobolev classes. The exceptional sets appearing in this discussion are evaluated by use of Bessel-type capacities as well as Hausdorff measures.