Varieties of idempotent groupoids with small clones

J. Gałuszka

Colloquium Mathematicae (1999)

  • Volume: 81, Issue: 1, page 63-87
  • ISSN: 0010-1354

Abstract

top
We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.

How to cite

top

Gałuszka, J.. "Varieties of idempotent groupoids with small clones." Colloquium Mathematicae 81.1 (1999): 63-87. <http://eudml.org/doc/210731>.

@article{Gałuszka1999,
abstract = {We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.},
author = {Gałuszka, J.},
journal = {Colloquium Mathematicae},
keywords = {-ary term operations; varieties of Steiner quasigroups; varieties of near-semilattices; idempotent groupoids},
language = {eng},
number = {1},
pages = {63-87},
title = {Varieties of idempotent groupoids with small clones},
url = {http://eudml.org/doc/210731},
volume = {81},
year = {1999},
}

TY - JOUR
AU - Gałuszka, J.
TI - Varieties of idempotent groupoids with small clones
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 1
SP - 63
EP - 87
AB - We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.
LA - eng
KW - -ary term operations; varieties of Steiner quasigroups; varieties of near-semilattices; idempotent groupoids
UR - http://eudml.org/doc/210731
ER -

References

top
  1. [1] J. Berman, Free spectra of 3-element algebras, in: Universal Algebra and Lattice Theory (Puebla, 1982), Lecture Notes in Math. 1004, Springer, Berlin, 1983, 10-53. 
  2. [2] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6 (1983), 227-238. Zbl0537.08002
  3. [3] B. Csákány, On affine spaces over prime fields, Acta Sci. Math. (Szeged) 37 (1975), 33-36. 
  4. [4] J. Dudek, Another unique minimal clone, to appear. Zbl0713.08002
  5. [5] J. Dudek, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191. Zbl0555.20035
  6. [6] J. Dudek, On minimal extension of sequences, Algebra Universalis 23 (1986), 308-312. Zbl0627.08001
  7. [7] J. Dudek, On varieties of groupoid modes, Demonstratio Math. 27 (1994), 815-828. Zbl0835.08003
  8. [8] J. Dudek, Small idempotent clones I, Czechoslovak Math. J. 48 (1998), 105-118. Zbl0931.20055
  9. [9] J. Dudek, The minimal extension of the sequence (0,0,3), Algebra Universalis 29 (1992), 419-436. Zbl0788.08003
  10. [10] J. Dudek, The unique minimal clone with three essentially binary operation, ibid. 27 (1990), 261-269. Zbl0713.08002
  11. [11] J. Dudek, Varieties of idempotent commutative groupoids, Fund. Math. 120 (1984), 193-204. Zbl0546.20049
  12. [12] G. Grätzer, Composition of functions, in: Proc. Conf. on Universal Algebra (Kingston, Ont., 1969), Queen's University, Kingston, Ont., 1970, 1-106. 
  13. [13] G. Grätzer, Universal Algebra, Springer, Berlin, 1979. 
  14. [14] G. Grätzer and A. Kisielewicz, A survey of some open problems on p n -sequences and free spectra of algebras and varieties, in: Universal Algebra and Quasigroup Theory, A. Romanowska and J. D. H. Smith (eds.), Heldermann, Berlin, 1992, 57-88. Zbl0772.08001
  15. [15] G. Grätzer and R. Padmanabhan, On idempotent, commutative and nonassociative groupoids, Proc. Amer. Math. Soc. 28 (1971), 75-80. Zbl0215.34501
  16. [16] A. Kisielewicz, On idempotent algebra with p n = 2 n , Algebra Universalis 23 (1981), 313-323. Zbl0621.08002
  17. [17] A. Kisielewicz, Characterization of p n -sequences for nonidempotent algebras, J. Algebra 108 (1987), 102-115. Zbl0614.08002
  18. [18] E. Marczewski, Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), 45-61. Zbl0104.25501
  19. [19] P. P. Pálfy, Minimal clones, Preprint No. 27/1984, Math. Inst. Hungar. Acad. Sci. 
  20. [20] J. Płonka, On algebras with at most n distinct n-ary operations, Algebra Universalis 1 (1971), 80-85. Zbl0219.08007
  21. [21] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247. Zbl0187.28702
  22. [22] W. Sierpiński, Sur les fonctions de plusieurs variables, ibid. 33 (1945), 169-173. Zbl0060.13111

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.