Varieties of idempotent groupoids with small clones
Colloquium Mathematicae (1999)
- Volume: 81, Issue: 1, page 63-87
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topGałuszka, J.. "Varieties of idempotent groupoids with small clones." Colloquium Mathematicae 81.1 (1999): 63-87. <http://eudml.org/doc/210731>.
@article{Gałuszka1999,
abstract = {We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.},
author = {Gałuszka, J.},
journal = {Colloquium Mathematicae},
keywords = {-ary term operations; varieties of Steiner quasigroups; varieties of near-semilattices; idempotent groupoids},
language = {eng},
number = {1},
pages = {63-87},
title = {Varieties of idempotent groupoids with small clones},
url = {http://eudml.org/doc/210731},
volume = {81},
year = {1999},
}
TY - JOUR
AU - Gałuszka, J.
TI - Varieties of idempotent groupoids with small clones
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 1
SP - 63
EP - 87
AB - We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.
LA - eng
KW - -ary term operations; varieties of Steiner quasigroups; varieties of near-semilattices; idempotent groupoids
UR - http://eudml.org/doc/210731
ER -
References
top- [1] J. Berman, Free spectra of 3-element algebras, in: Universal Algebra and Lattice Theory (Puebla, 1982), Lecture Notes in Math. 1004, Springer, Berlin, 1983, 10-53.
- [2] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6 (1983), 227-238. Zbl0537.08002
- [3] B. Csákány, On affine spaces over prime fields, Acta Sci. Math. (Szeged) 37 (1975), 33-36.
- [4] J. Dudek, Another unique minimal clone, to appear. Zbl0713.08002
- [5] J. Dudek, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191. Zbl0555.20035
- [6] J. Dudek, On minimal extension of sequences, Algebra Universalis 23 (1986), 308-312. Zbl0627.08001
- [7] J. Dudek, On varieties of groupoid modes, Demonstratio Math. 27 (1994), 815-828. Zbl0835.08003
- [8] J. Dudek, Small idempotent clones I, Czechoslovak Math. J. 48 (1998), 105-118. Zbl0931.20055
- [9] J. Dudek, The minimal extension of the sequence (0,0,3), Algebra Universalis 29 (1992), 419-436. Zbl0788.08003
- [10] J. Dudek, The unique minimal clone with three essentially binary operation, ibid. 27 (1990), 261-269. Zbl0713.08002
- [11] J. Dudek, Varieties of idempotent commutative groupoids, Fund. Math. 120 (1984), 193-204. Zbl0546.20049
- [12] G. Grätzer, Composition of functions, in: Proc. Conf. on Universal Algebra (Kingston, Ont., 1969), Queen's University, Kingston, Ont., 1970, 1-106.
- [13] G. Grätzer, Universal Algebra, Springer, Berlin, 1979.
- [14] G. Grätzer and A. Kisielewicz, A survey of some open problems on -sequences and free spectra of algebras and varieties, in: Universal Algebra and Quasigroup Theory, A. Romanowska and J. D. H. Smith (eds.), Heldermann, Berlin, 1992, 57-88. Zbl0772.08001
- [15] G. Grätzer and R. Padmanabhan, On idempotent, commutative and nonassociative groupoids, Proc. Amer. Math. Soc. 28 (1971), 75-80. Zbl0215.34501
- [16] A. Kisielewicz, On idempotent algebra with , Algebra Universalis 23 (1981), 313-323. Zbl0621.08002
- [17] A. Kisielewicz, Characterization of -sequences for nonidempotent algebras, J. Algebra 108 (1987), 102-115. Zbl0614.08002
- [18] E. Marczewski, Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), 45-61. Zbl0104.25501
- [19] P. P. Pálfy, Minimal clones, Preprint No. 27/1984, Math. Inst. Hungar. Acad. Sci.
- [20] J. Płonka, On algebras with at most n distinct n-ary operations, Algebra Universalis 1 (1971), 80-85. Zbl0219.08007
- [21] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247. Zbl0187.28702
- [22] W. Sierpiński, Sur les fonctions de plusieurs variables, ibid. 33 (1945), 169-173. Zbl0060.13111
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.