Small idempotent clones. I

Józef Dudek

Czechoslovak Mathematical Journal (1998)

  • Volume: 48, Issue: 1, page 105-118
  • ISSN: 0011-4642

Abstract

top
G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning p n -sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in p n -sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids ( G , · ) with p 2 ( G , · ) 2 (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].

How to cite

top

Dudek, Józef. "Small idempotent clones. I." Czechoslovak Mathematical Journal 48.1 (1998): 105-118. <http://eudml.org/doc/30406>.

@article{Dudek1998,
abstract = {G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].},
author = {Dudek, Józef},
journal = {Czechoslovak Mathematical Journal},
keywords = {varieties of idempotent groupoids; -ary polynomials},
language = {eng},
number = {1},
pages = {105-118},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Small idempotent clones. I},
url = {http://eudml.org/doc/30406},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Dudek, Józef
TI - Small idempotent clones. I
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 1
SP - 105
EP - 118
AB - G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].
LA - eng
KW - varieties of idempotent groupoids; -ary polynomials
UR - http://eudml.org/doc/30406
ER -

References

top
  1. Free spectra of 3-element algebras, Universal Algebra and Lattice Theory (Puebla, 1982). Lecture Notes in Math., 1004, Springer-Verlag, Berlin, New York, 1983, pp. 10–53. (1983) Zbl0518.08010MR0716173
  2. Rectangular groupoids, Czechoslovak Math. J. 35 (1985), 405–414. (1985) MR0803035
  3. On affine spaces over prime fields, Acta Sci. Math. (Szeged) 37 (1975), 33–36. (1975) MR0401609
  4. All minimal clones on the three-element set, Acta Cybernet. 6 (1983), 227–238. (1983) MR0725722
  5. Some remarks on distributive groupoids, Czechoslovak Math. J. 31 (1981), 58–64. (1981) Zbl0472.20025MR0626918
  6. 10.4064/fm-120-3-187-191, Fund. Math. 120 (1984), 187–191. (1984) Zbl0555.20035MR0755775DOI10.4064/fm-120-3-187-191
  7. 10.4064/fm-120-3-193-204, Fund. Math. 120 (1984), 193–204. (1984) Zbl0546.20049MR0755776DOI10.4064/fm-120-3-193-204
  8. Polynomial characterization of some idempotent algebras, Acta Sci. Math. 50 (1986), 39–49. (1986) Zbl0616.08011MR0862179
  9. 10.1007/BF01230623, Algebra Universalis 23 (1986), 308–312. (1986) Zbl0627.08001MR0903935DOI10.1007/BF01230623
  10. Polynomials in idempotent commutative groupoids, Dissertationes Math. 286 (1989), 1–55. (1989) Zbl0687.08003MR1001646
  11. p n -sequences. The minimal extension of sequences. Abstract, Presented at the Conference on Logic and Algebra dedicated to Roberto Magari, on his 60 Birthday, Pontignano (Siena) 26–30 April 1994. 
  12. Affine spaces over GF(4), (to appear). (to appear) MR1408727
  13. 10.1007/BF02485242, Algebra Universalis 5 (1975), 125–140. (1975) MR0404103DOI10.1007/BF02485242
  14. 10.1016/0021-8693(70)90073-6, J. Algebra 15, 195–224. MR0263953DOI10.1016/0021-8693(70)90073-6
  15. The number of polynomials of idempotent semigroups, J. Algebra 18, 366–376. Zbl0219.20044MR0274375
  16. Composition of functions, Proceedings of the conference on universal algebra (Kingston, 1969), Queen’s Univ., Kingston, Ont., 1970, pp. 1–106. (1970) MR0276161
  17. Universal Algebra. Second edition, Springer-Verlag, New York-Heidelberg-Berlin, 1979. (1979) MR0538623
  18. A survey of some open problems on p n -sequences and free spectra of algebras and varieties, Universal Algebra and Quasigroup Theory, A.  Romanowska and J. D. H. Smith (eds.), Helderman Verlag (Berlin), 1992, pp. 57–88. (1992) MR1191227
  19. 10.2307/2037760, Proc. Amer. Math. 28 (1971), 75–78. (1971) MR0276393DOI10.2307/2037760
  20. 10.2140/pjm.1970.32.697, Pacific J. Math. 22 (1970), 697–709. (1970) MR0256969DOI10.2140/pjm.1970.32.697
  21. 10.1007/BF02485263, Algebra Universalis 5 (1974), 307–311. (1974) MR0392773DOI10.1007/BF02485263
  22. 10.1007/BF01230624, Algebra Universalis 23 (1981), 313–323. (1981) MR0903936DOI10.1007/BF01230624
  23. 10.4064/fm-50-1-45-61, Fund. Math. 50 (1961), 45–61. (1961) Zbl0104.25501MR0138572DOI10.4064/fm-50-1-45-61
  24. 10.1007/BF01228164, Arch. Math. 24 (1973), 14–20. (1973) MR0316601DOI10.1007/BF01228164
  25. 10.1007/BF02944996, Algebra Universalis 1 (1972), 374–382. (1972) Zbl0236.20043MR0294550DOI10.1007/BF02944996
  26. Minimal clones, Preprint No. 27/1984, Budapest, May 1984, Math. Inst. of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13–15. Hungary. 
  27. The arity of minimal clones, Acta Sci. Math. 50 (1986), 331–333. (1986) MR0882043
  28. A four-element algebra whose identities are not finitely based, Algebra Universalis 11 91980, 255–260. Zbl0449.08005MR0588218
  29. 10.1007/BF02944958, Algebra Universalis 1 (1971), 73–79. (1971) MR0286928DOI10.1007/BF02944958
  30. 10.1007/BF02944959, Algebra Universalis 1 (1971), 80–85. (1971) MR0286929DOI10.1007/BF02944959
  31. 10.4064/fm-64-2-241-247, Fund. Math. 64 (1969), 241–247. (1969) MR0244133DOI10.4064/fm-64-2-241-247
  32. On k -cyclic groupoids, Math. Japonica 30 (1985), no. 3, 371–382. (1985) MR0803288
  33. Subdirectly irreducible groupoids in some varieties, CMUC 24/4 (1983), 631–645. (1983) MR0738559
  34. 10.2140/pjm.1964.14.1091, Pacific J. Math. 14 (1964), 1091–1102. (1964) MR0170972DOI10.2140/pjm.1964.14.1091

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.