Small idempotent clones. I
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 1, page 105-118
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDudek, Józef. "Small idempotent clones. I." Czechoslovak Mathematical Journal 48.1 (1998): 105-118. <http://eudml.org/doc/30406>.
@article{Dudek1998,
abstract = {G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].},
author = {Dudek, Józef},
journal = {Czechoslovak Mathematical Journal},
keywords = {varieties of idempotent groupoids; -ary polynomials},
language = {eng},
number = {1},
pages = {105-118},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Small idempotent clones. I},
url = {http://eudml.org/doc/30406},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Dudek, Józef
TI - Small idempotent clones. I
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 1
SP - 105
EP - 118
AB - G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].
LA - eng
KW - varieties of idempotent groupoids; -ary polynomials
UR - http://eudml.org/doc/30406
ER -
References
top- Free spectra of 3-element algebras, Universal Algebra and Lattice Theory (Puebla, 1982). Lecture Notes in Math., 1004, Springer-Verlag, Berlin, New York, 1983, pp. 10–53. (1983) Zbl0518.08010MR0716173
- Rectangular groupoids, Czechoslovak Math. J. 35 (1985), 405–414. (1985) MR0803035
- On affine spaces over prime fields, Acta Sci. Math. (Szeged) 37 (1975), 33–36. (1975) MR0401609
- All minimal clones on the three-element set, Acta Cybernet. 6 (1983), 227–238. (1983) MR0725722
- Some remarks on distributive groupoids, Czechoslovak Math. J. 31 (1981), 58–64. (1981) Zbl0472.20025MR0626918
- 10.4064/fm-120-3-187-191, Fund. Math. 120 (1984), 187–191. (1984) Zbl0555.20035MR0755775DOI10.4064/fm-120-3-187-191
- 10.4064/fm-120-3-193-204, Fund. Math. 120 (1984), 193–204. (1984) Zbl0546.20049MR0755776DOI10.4064/fm-120-3-193-204
- Polynomial characterization of some idempotent algebras, Acta Sci. Math. 50 (1986), 39–49. (1986) Zbl0616.08011MR0862179
- 10.1007/BF01230623, Algebra Universalis 23 (1986), 308–312. (1986) Zbl0627.08001MR0903935DOI10.1007/BF01230623
- Polynomials in idempotent commutative groupoids, Dissertationes Math. 286 (1989), 1–55. (1989) Zbl0687.08003MR1001646
- -sequences. The minimal extension of sequences. Abstract, Presented at the Conference on Logic and Algebra dedicated to Roberto Magari, on his 60 Birthday, Pontignano (Siena) 26–30 April 1994.
- Affine spaces over GF(4), (to appear). (to appear) MR1408727
- 10.1007/BF02485242, Algebra Universalis 5 (1975), 125–140. (1975) MR0404103DOI10.1007/BF02485242
- 10.1016/0021-8693(70)90073-6, J. Algebra 15, 195–224. MR0263953DOI10.1016/0021-8693(70)90073-6
- The number of polynomials of idempotent semigroups, J. Algebra 18, 366–376. Zbl0219.20044MR0274375
- Composition of functions, Proceedings of the conference on universal algebra (Kingston, 1969), Queen’s Univ., Kingston, Ont., 1970, pp. 1–106. (1970) MR0276161
- Universal Algebra. Second edition, Springer-Verlag, New York-Heidelberg-Berlin, 1979. (1979) MR0538623
- A survey of some open problems on -sequences and free spectra of algebras and varieties, Universal Algebra and Quasigroup Theory, A. Romanowska and J. D. H. Smith (eds.), Helderman Verlag (Berlin), 1992, pp. 57–88. (1992) MR1191227
- 10.2307/2037760, Proc. Amer. Math. 28 (1971), 75–78. (1971) MR0276393DOI10.2307/2037760
- 10.2140/pjm.1970.32.697, Pacific J. Math. 22 (1970), 697–709. (1970) MR0256969DOI10.2140/pjm.1970.32.697
- 10.1007/BF02485263, Algebra Universalis 5 (1974), 307–311. (1974) MR0392773DOI10.1007/BF02485263
- 10.1007/BF01230624, Algebra Universalis 23 (1981), 313–323. (1981) MR0903936DOI10.1007/BF01230624
- 10.4064/fm-50-1-45-61, Fund. Math. 50 (1961), 45–61. (1961) Zbl0104.25501MR0138572DOI10.4064/fm-50-1-45-61
- 10.1007/BF01228164, Arch. Math. 24 (1973), 14–20. (1973) MR0316601DOI10.1007/BF01228164
- 10.1007/BF02944996, Algebra Universalis 1 (1972), 374–382. (1972) Zbl0236.20043MR0294550DOI10.1007/BF02944996
- Minimal clones, Preprint No. 27/1984, Budapest, May 1984, Math. Inst. of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13–15. Hungary.
- The arity of minimal clones, Acta Sci. Math. 50 (1986), 331–333. (1986) MR0882043
- A four-element algebra whose identities are not finitely based, Algebra Universalis 11 91980, 255–260. Zbl0449.08005MR0588218
- 10.1007/BF02944958, Algebra Universalis 1 (1971), 73–79. (1971) MR0286928DOI10.1007/BF02944958
- 10.1007/BF02944959, Algebra Universalis 1 (1971), 80–85. (1971) MR0286929DOI10.1007/BF02944959
- 10.4064/fm-64-2-241-247, Fund. Math. 64 (1969), 241–247. (1969) MR0244133DOI10.4064/fm-64-2-241-247
- On -cyclic groupoids, Math. Japonica 30 (1985), no. 3, 371–382. (1985) MR0803288
- Subdirectly irreducible groupoids in some varieties, CMUC 24/4 (1983), 631–645. (1983) MR0738559
- 10.2140/pjm.1964.14.1091, Pacific J. Math. 14 (1964), 1091–1102. (1964) MR0170972DOI10.2140/pjm.1964.14.1091
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.