Front d'onde et propagation des singularités pour un vecteur-distribution

Dominique Manchon

Colloquium Mathematicae (1999)

  • Volume: 81, Issue: 2, page 161-191
  • ISSN: 0010-1354

Abstract

top
We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.

How to cite

top

Manchon, Dominique. "Front d'onde et propagation des singularités pour un vecteur-distribution." Colloquium Mathematicae 81.2 (1999): 161-191. <http://eudml.org/doc/210734>.

@article{Manchon1999,
abstract = {We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.},
author = {Manchon, Dominique},
journal = {Colloquium Mathematicae},
keywords = {wave front set; unitary representation; pseudo-differential-like operators},
language = {eng},
number = {2},
pages = {161-191},
title = {Front d'onde et propagation des singularités pour un vecteur-distribution},
url = {http://eudml.org/doc/210734},
volume = {81},
year = {1999},
}

TY - JOUR
AU - Manchon, Dominique
TI - Front d'onde et propagation des singularités pour un vecteur-distribution
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 2
SP - 161
EP - 191
AB - We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.
LA - eng
KW - wave front set; unitary representation; pseudo-differential-like operators
UR - http://eudml.org/doc/210734
ER -

References

top
  1. [Dui] J. J. Duistermaat, Fourier Integral Operators, Courant Institute, 1973 (Rééd. Progress in Math. 130, Birkhäuser, 1995). 
  2. [D-H] J. J. Duistermaat and L. Hörmander, Fourier integral operators II, Acta Math. 128 (1972), 183-269. Zbl0232.47055
  3. [Go] R. Goodman, Elliptic and subelliptic estimates for operators in an enveloping algebra, Duke Math. J. 47 (1980), 819-833. Zbl0466.35026
  4. [He] B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque 112 (1984). Zbl0541.35002
  5. [Hr1] L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math. 32 (1979), 359-443. Zbl0388.47032
  6. [Hr2] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 1985. 
  7. [Hw] R. Howe, Wave front sets of representations of Lie groups, in: Automorphic Forms, Representation Theory and Arithmetic, Tata Inst. Fund. Res. Stud. Math. 10, Bombay, 1981, 117-140. 
  8. [Jο] P. E. T. Jοrgensen, Distribution representations of Lie groups, J. Math. Anal. Appl. 65 (1978), 1-19. 
  9. [M1] D. Manchon, Weyl symbolic calculus on any Lie group, Acta Appl. Math. 30 (1993), 159-186. Zbl0779.22005
  10. [M2] D. Manchon, Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie, Bull. Soc. Math. France 123 (1995), 117-138. 
  11. [M3] D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math. 418 (1991), 77-129. Zbl0721.22004
  12. [M4] D. Manchon, Distributions à support compact et représentations unitaires, J. Lie Theory, à paraître. 
  13. [Me1] A. Melin, A remark on invariant pseudo-differential operators, Math. Scand. 30 (1972), 290-296. Zbl0258.22013
  14. [Me2] A. Melin, Parametrix constructions for right invariant differential operators on nilpotent groups, Ann. Global Anal. Geom. 1 (1983), 79-130. Zbl0524.58044
  15. [Ne] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615. Zbl0091.10704
  16. [S] R. T. Seeley, Complex powers of an elliptic operator, in: Singular Integrals, Proc. Sympos. Pure Math. 10, Amer. Math. Soc., 1967, 288-307. Zbl0159.15504
  17. [Shu] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, 1987. 
  18. [St] R. S. Strichartz, A functional calculus for elliptic pseudo-differential operators, Amer. J. Math. 94 (1972), 711-722. Zbl0246.35082
  19. [Stk] H. Stetkæ r, Invariant pseudo-differential operators, Math. Scand. 28 (1971), 105-123. 
  20. [T] M. E. Taylor, Pseudodifferential Operators, Princeton Univ. Press, 1981 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.