Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie

Dominique Manchon

Bulletin de la Société Mathématique de France (1995)

  • Volume: 123, Issue: 1, page 117-138
  • ISSN: 0037-9484

How to cite

top

Manchon, Dominique. "Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie." Bulletin de la Société Mathématique de France 123.1 (1995): 117-138. <http://eudml.org/doc/87707>.

@article{Manchon1995,
author = {Manchon, Dominique},
journal = {Bulletin de la Société Mathématique de France},
keywords = {pseudodifferential operators on Lie groups; Weyl calculus; analytic symbol classes; Lie algebra; Fourier transform; regularity; hypoelliptic symbols; Weyl formula; asymptotic distribution; elliptic operators; unitary irreducible representations},
language = {fre},
number = {1},
pages = {117-138},
publisher = {Société mathématique de France},
title = {Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie},
url = {http://eudml.org/doc/87707},
volume = {123},
year = {1995},
}

TY - JOUR
AU - Manchon, Dominique
TI - Opérateurs pseudodifférentiels et représentations unitaires des groupes de Lie
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 1
SP - 117
EP - 138
LA - fre
KW - pseudodifferential operators on Lie groups; Weyl calculus; analytic symbol classes; Lie algebra; Fourier transform; regularity; hypoelliptic symbols; Weyl formula; asymptotic distribution; elliptic operators; unitary irreducible representations
UR - http://eudml.org/doc/87707
ER -

References

top
  1. [A-K] AUSLANDER (L.) and KOSTANT (B.). — Polarization and unitary representations of solvable Lie groups, Invent. Math., t. 14, 1971, p. 255-354. Zbl0233.22005MR45 #2092
  2. [B-C-D] BERNAT (P.), CONZE (N.), DUFLO (M.) et al. — Représentations des groupes de Lie résolubles, Monographie Soc. Math. France, t. 4, 1972. Zbl0248.22012MR56 #3183
  3. [Cha] CHARBONNEL (J.-Y.). — Orbites fermées et orbites tempérées, Ann. Sci. École Norm. Sup., t. 23, 1990, p. 123-149. Zbl0760.22010MR91b:22018
  4. [Du1] DUFLO (M.). — Caractères des groupes et des algèbres de Lie résolubles, Ann. Sci. École Norm. Sup., t. 3, 1970, p. 23-74. Zbl0223.22016MR42 #4672
  5. [Du2] DUFLO (M.). — Fundamental-series representations of a semi-simple Lie group, Funct. Anal. Appl., t. 4, 1970, p. 122-126. Zbl0254.22007MR45 #6975
  6. [Fe1] FEIGIN (V.I.). — Asymptotic distribution of eigenvalues for hypoelliptic systems in Rn, Math. USSR Sbornik, t. 28, n° 4, 1976, p. 533-552. Zbl0381.35063MR58 #23165
  7. [Fe2] FEIGIN (V.I.). — New classes of pseudodifferential operators in ℝn and some applications, Trans. Moscow Math. Soc., t. 36, 1978, p. 153-195. Zbl0421.35083MR82b:47062
  8. [Gui] GUICHARDET (A.). — Article d'introduction aux travaux de M. Duflo, prépublication de l'École Polytechnique. 
  9. [He] HELFFER (B.). — Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, Soc. Math. France, t. 112, 1984. Zbl0541.35002MR86d:35151
  10. [Hr] HÖRMANDER (L.). — The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., t. 32, 1979, p. 359-443. Zbl0388.47032MR80j:47060
  11. [Hw1] HOWE (R.). — A symbolic calculus for nilpotent Lie groups, Proc. Conference on operator algebras and group representations, Neptun, Romania Pitman, London, 1980. Zbl0522.22009
  12. [Hw2] HOWE (R.). — The role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc., t. 3, n° 2, 1980, p. 821-843. Zbl0442.43002MR81h:22010
  13. [Ju] JUHL (A.). — Orbit method for nilpotent Lie groups and distribution of eigenvalues, Math. Nachr., t. 116, 1984, p. 109-152. Zbl0572.58023MR86m:58143
  14. [Kh] KHALGUI (M.S.). — Caractères des groupes de Lie, J. Funct. Anal., t. 47, 1982, p. 64-77. Zbl0507.22009MR84f:22020
  15. [Kir] KIRILLOV (A.A.). — Unitary representations of nilpotent Lie groups, Russ. Math. Surveys, t. 17, n° 4, 1962, p. 53-104. Zbl0106.25001MR25 #5396
  16. [Kn] KNAPP (A.W.). — Representation theory of semisimple Lie groups, an overview based on examples. — Princeton, 1986. Zbl0604.22001
  17. [Lu] LUDWIG (J.). — Good ideals in the group algebra of a nilpotent Lie group, Math. Zeitschr., t. 161, 1978, p. 195-210. Zbl0365.22007MR58 #16958
  18. [Ma1] MANCHON (D.). — Formule de Weyl pour les groupes de Lie nilpotents, J. reine angew. Math., t. 418, 1991, p. 77-129. Zbl0721.22004MR92j:22023
  19. [Ma2] MANCHON (D.). — Calcul symbolique sur les groupes de Lie nilpotents et applications, J. Funct. Anal., t. 102, n° 2, 1991, p. 206-251. Zbl0745.22006MR93a:22007
  20. [Ma3] MANCHON (D.). — Weyl symbolic calculus on any Lie group, Acta Appl. Math., t. 30, 1993, p. 159-186. Zbl0779.22005MR94d:22008
  21. [Nil] NILSSON (N.). — Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Ark. Math., t. 5, n° 35, 1965, p. 527-540. Zbl0144.36302MR36 #2015
  22. [Rf] RIEFFEL (M.A.). — Lie group convolution algebras as deformation quantizations of linear Poisson structures, Am. J. Math., t. 48, 1990, p. 657-686. Zbl0713.58054MR92b:58076
  23. [Ro] ROSSMANN (W.). — Kirillov's character formula for reductive Lie groups, Invent. Math., t. 48, 1978, p. 207-220. Zbl0372.22011MR81g:22012
  24. [Shu] SHUBIN (M.A.). — Pseudodifferential operators and spectral theory, Springer, New York, 1987. Zbl0616.47040MR88c:47105
  25. [T-S] TULOVSKII (V.N.) and Shubin (M.A.). — On the asymptotic distribution of eigenvalues of pseudodifferential operators in Rn, Math. USSR Sbornik, t. 21, n° 4, 1973, p. 565-583. Zbl0295.35068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.