On a problem of Matkowski

Zoltán Daróczy; Gyula Maksa

Colloquium Mathematicae (1999)

  • Volume: 82, Issue: 1, page 117-123
  • ISSN: 0010-1354

Abstract

top
We solve Matkowski's problem for strictly comparable quasi-arithmetic means.

How to cite

top

Daróczy, Zoltán, and Maksa, Gyula. "On a problem of Matkowski." Colloquium Mathematicae 82.1 (1999): 117-123. <http://eudml.org/doc/210744>.

@article{Daróczy1999,
abstract = {We solve Matkowski's problem for strictly comparable quasi-arithmetic means.},
author = {Daróczy, Zoltán, Maksa, Gyula},
journal = {Colloquium Mathematicae},
keywords = {functional equation; quasi-arithmetic mean; convexity; continuous strictly monotonic functions; functional equations},
language = {eng},
number = {1},
pages = {117-123},
title = {On a problem of Matkowski},
url = {http://eudml.org/doc/210744},
volume = {82},
year = {1999},
}

TY - JOUR
AU - Daróczy, Zoltán
AU - Maksa, Gyula
TI - On a problem of Matkowski
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 1
SP - 117
EP - 123
AB - We solve Matkowski's problem for strictly comparable quasi-arithmetic means.
LA - eng
KW - functional equation; quasi-arithmetic mean; convexity; continuous strictly monotonic functions; functional equations
UR - http://eudml.org/doc/210744
ER -

References

top
  1. [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966. Zbl0139.09301
  2. [2] Z. Daróczy, On a class of means of two variables, Publ. Math. Debrecen 55 (1999), 177-197. Zbl0932.39019
  3. [3] Z. Daróczy and Zs. Páles, On means that are both quasi-arithmetic and conjugate arithmetic, Acta Math. Hungar., submitted. 
  4. [4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press., Cambridge, 1934. 
  5. [5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Uniw. Śląski and PWN, Katowice-Kraków-Warszawa, 1985. 
  6. [6] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107. Zbl0930.26014
  7. [7] J. Matkowski, Complementary quasi-arithmetic means, in: Leaflets in Mathematics, Proc. Numbers, Functions, Equations '98 Internat. Conf. Noszvaj (Hungary), Pécs, 1998, 123-124. 
  8. [8] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973. Zbl0271.26009

NotesEmbed ?

top

You must be logged in to post comments.