A limit involving functions in W 0 1 , p ( Ω )

Biagio Ricceri

Colloquium Mathematicae (1999)

  • Volume: 82, Issue: 2, page 219-222
  • ISSN: 0010-1354

Abstract

top
We point out the following fact: if Ω ⊂ n is a bounded open set, δ>0, and p>1, then l i m 0 + i n f V Ω | ( x ) | p d x = , where V = W 0 1 , p ( Ω ) : m e a s ( x Ω : | ( x ) | > δ ) > .

How to cite

top

Ricceri, Biagio. "A limit involving functions in $W^{1,p}_0(Ω)$." Colloquium Mathematicae 82.2 (1999): 219-222. <http://eudml.org/doc/210758>.

@article{Ricceri1999,
abstract = {We point out the following fact: if Ω ⊂ $ℝ^n$ is a bounded open set, δ>0, and p>1, then $lim_\{ → 0^+\} inf_\{ ∈ V_\} ∫_Ω |∇(x)|^p dx=∞$, where $V_=\{ ∈ W^\{1,p\}_0(Ω): meas (\{x ∈ Ω:|(x)|>δ\})>\}.$},
author = {Ricceri, Biagio},
journal = {Colloquium Mathematicae},
keywords = {Sobolev spaces on bounded domains; subatomic decompositions; Schwartz space; Taylor expansions},
language = {eng},
number = {2},
pages = {219-222},
title = {A limit involving functions in $W^\{1,p\}_0(Ω)$},
url = {http://eudml.org/doc/210758},
volume = {82},
year = {1999},
}

TY - JOUR
AU - Ricceri, Biagio
TI - A limit involving functions in $W^{1,p}_0(Ω)$
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 2
SP - 219
EP - 222
AB - We point out the following fact: if Ω ⊂ $ℝ^n$ is a bounded open set, δ>0, and p>1, then $lim_{ → 0^+} inf_{ ∈ V_} ∫_Ω |∇(x)|^p dx=∞$, where $V_={ ∈ W^{1,p}_0(Ω): meas ({x ∈ Ω:|(x)|>δ})>}.$
LA - eng
KW - Sobolev spaces on bounded domains; subatomic decompositions; Schwartz space; Taylor expansions
UR - http://eudml.org/doc/210758
ER -

References

top
  1. [1] H. Brézis, Analyse fonctionnelle, Masson, 1983. 
  2. [2] V. G. Maz'ja, Sobolev Spaces, Springer, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.