Displaying similar documents to “A limit involving functions in

Existence and multiplicity of solutions for a -Kirchhoff type problem via variational techniques

A. Mokhtari, Toufik Moussaoui, D. O’Regan (2015)

Archivum Mathematicum

Similarity:

This paper discusses the existence and multiplicity of solutions for a class of -Kirchhoff type problems with Dirichlet boundary data of the following form

where is a smooth open subset of and with , , are positive constants and is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.

Domination numbers in graphs with removed edge or set of edges

Magdalena Lemańska (2005)

Discussiones Mathematicae Graph Theory

Similarity:

It is known that the removal of an edge from a graph G cannot decrease a domination number γ(G) and can increase it by at most one. Thus we can write that γ(G) ≤ γ(G-e) ≤ γ(G)+1 when an arbitrary edge e is removed. Here we present similar inequalities for the weakly connected domination number and the connected domination number , i.e., we show that and if G and G-e are connected. Additionally we show that and if G and G - Eₚ are connected and Eₚ = E(Hₚ) where Hₚ of order...

Does the endomorphism poset determine whether a finite poset is connected? An issue Duffus raised in 1978

Jonathan David Farley (2023)

Mathematica Bohemica

Similarity:

Duffus wrote in his 1978 Ph.D. thesis, “It is not obvious that is connected and imply that is connected”, where and are finite nonempty posets. We show that, indeed, under these hypotheses is connected and .

Connected components of sets of finite perimeter and applications to image processing

Luigi Ambrosio, Vicent Caselles, Simon Masnou, Jean-Michel Morel (2001)

Journal of the European Mathematical Society

Similarity:

This paper contains a systematic analysis of a natural measure theoretic notion of connectedness for sets of finite perimeter in , introduced by H. Federer in the more general framework of the theory of currents. We provide a new and simpler proof of the existence and uniqueness of the decomposition into the so-called -connected components. Moreover, we study carefully the structure of the essential boundary of these components and give in particular a reconstruction formula of a set...

inequalities for the growth of polynomials with restricted zeros

Nisar A. Rather, Suhail Gulzar, Aijaz A. Bhat (2022)

Archivum Mathematicum

Similarity:

Let be a polynomial of degree at most which does not vanish in the disk , then for and , Boas and Rahman proved

In this paper, we improve the above inequality for by involving some of the coefficients of the polynomial . Analogous result for the class of polynomials having no zero in is also given.

Geometric rigidity of invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Similarity:

Let be a probability measure on which is invariant and ergodic for , and . Let be a local diffeomorphism on some open set. We show that if and , then at -a.e. point . In particular, if is a piecewise-analytic map preserving then there is an open -invariant set containing supp such that is piecewise-linear with slopes which are rational powers of . In a similar vein, for as above, if is another integer and are not powers of a common integer, and if is...

On the topology of polynomials with bounded integer coefficients

De-Jun Feng (2016)

Journal of the European Mathematical Society

Similarity:

For a real number and a positive integer , let . In this paper, we show that is dense in if and only if and is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].

Essential norms of the Neumann operator of the arithmetical mean

Josef Král, Dagmar Medková (2001)

Mathematica Bohemica

Similarity:

Let () be a compact set; assume that each ball centered on the boundary of meets in a set of positive Lebesgue measure. Let be the class of all continuously differentiable real-valued functions with compact support in and denote by the area of the unit sphere in . With each we associate the function

of the variable (which is continuous in and harmonic in ). depends only on the restriction of to the boundary of . This gives rise to a linear operator ...

A Hardy type inequality for functions

Hernán Castro, Juan Dávila, Hui Wang (2013)

Journal of the European Mathematical Society

Similarity:

We consider functions , where is a smooth bounded domain, and is an integer. For all , such that , we prove that with , where is a smooth positive function which coincides with dist near , and denotes any partial differential operator of order .

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak (2017)

Czechoslovak Mathematical Journal

Similarity:

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point in a metric measure space is called a generalized Lebesgue point of a measurable function if the medians of over the balls converge to when converges to . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....

Calculus of variations with differential forms

Saugata Bandyopadhyay, Bernard Dacorogna, Swarnendu Sil (2015)

Journal of the European Mathematical Society

Similarity:

We study integrals of the form , where , is continuous and is a -form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.

Remarks on the Bourgain-Brezis-Mironescu Approach to Sobolev Spaces

B. Bojarski (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For a function the notion of p-mean variation of order 1, is defined. It generalizes the concept of F. Riesz variation of functions on the real line ℝ¹ to ℝⁿ, n > 1. The characterisation of the Sobolev space in terms of is directly related to the characterisation of by Lipschitz type pointwise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain-Brezis-Mironescu approach.