On tubes for blocks of wild type

Karin Erdmann

Colloquium Mathematicae (1999)

  • Volume: 82, Issue: 2, page 261-270
  • ISSN: 0010-1354

Abstract

top
We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.

How to cite

top

Erdmann, Karin. "On tubes for blocks of wild type." Colloquium Mathematicae 82.2 (1999): 261-270. <http://eudml.org/doc/210761>.

@article{Erdmann1999,
abstract = {We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.},
author = {Erdmann, Karin},
journal = {Colloquium Mathematicae},
keywords = {wild representation type; defect groups; vertices; finite groups; wild blocks; group algebras; stable Auslander-Reiten quivers; tubes},
language = {eng},
number = {2},
pages = {261-270},
title = {On tubes for blocks of wild type},
url = {http://eudml.org/doc/210761},
volume = {82},
year = {1999},
}

TY - JOUR
AU - Erdmann, Karin
TI - On tubes for blocks of wild type
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 2
SP - 261
EP - 270
AB - We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.
LA - eng
KW - wild representation type; defect groups; vertices; finite groups; wild blocks; group algebras; stable Auslander-Reiten quivers; tubes
UR - http://eudml.org/doc/210761
ER -

References

top
  1. [1] J. L. Alperin and M. Broué, Local methods in block theory, Ann. of Math. 110 (1979), 143-157. Zbl0416.20006
  2. [2] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1994. 
  3. [3] K. Erdmann, On modules with cyclic vertices in the Auslander-Reiten quiver, J. Algebra 104 (1986), 289-300. Zbl0602.20011
  4. [4] K. Erdmann, On the vertices of modules in the Auslander-Reiten quiver of p-groups, Math. Z. 203 (1990), 321-334. Zbl0664.20009
  5. [5] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer, 1990. Zbl0696.20001
  6. [6] K. Erdmann, On Auslander-Reiten components for group algebras, J. Pure Appl. Algebra 104 (1995), 149-160. Zbl0839.20007
  7. [7] W. Feit, The Representation Theory of Finite Groups, North-Holland, 1982. Zbl0493.20007
  8. [8] J. A. Green, Functors on categories of finite group representations, J. Pure Appl. Algebra 37 (1985), 265-298. Zbl0567.20001
  9. [9] D. Happel, U. Preiser and C. M. Ringel, Vinberg’s characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1981, 280-294. 
  10. [10] S. Kawata, Module correspondences in Auslander-Reiten quivers for finite groups, Osaka J. Math. 26 (1989), 671-678. Zbl0705.20009
  11. [11] P. Landrock, Finite Group Algebras and Their Modules, London Math. Soc. Lecture Note Ser. 84, Cambridge Univ. Press, 1984. Zbl0523.20001
  12. [12] I. Reiten and A. Skowroński, Sincere stable tubes, preprint (Bielefeld 99-011). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.