Directing components for quasitilted algebras

Flávio Coelho

Colloquium Mathematicae (1999)

  • Volume: 82, Issue: 2, page 271-275
  • ISSN: 0010-1354

Abstract

top
We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.

How to cite

top

Coelho, Flávio. "Directing components for quasitilted algebras." Colloquium Mathematicae 82.2 (1999): 271-275. <http://eudml.org/doc/210764>.

@article{Coelho1999,
abstract = {We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.},
author = {Coelho, Flávio},
journal = {Colloquium Mathematicae},
keywords = {Auslander-Reiten quivers; quasitilted algebras; tilted algebras; directing modules; finite dimensional algebras; categories of finitely generated modules; injective dimensions; projective dimensions; global dimensions},
language = {eng},
number = {2},
pages = {271-275},
title = {Directing components for quasitilted algebras},
url = {http://eudml.org/doc/210764},
volume = {82},
year = {1999},
}

TY - JOUR
AU - Coelho, Flávio
TI - Directing components for quasitilted algebras
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 2
SP - 271
EP - 275
AB - We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.
LA - eng
KW - Auslander-Reiten quivers; quasitilted algebras; tilted algebras; directing modules; finite dimensional algebras; categories of finitely generated modules; injective dimensions; projective dimensions; global dimensions
UR - http://eudml.org/doc/210764
ER -

References

top
  1. [1] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. Zbl0834.16001
  2. [2] S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: Proc. ICRA II, Lecture Notes in Math. 832, Springer, 1980, 103-169. Zbl0446.16031
  3. [3] F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc. 125 (1997), 1283-1291. Zbl0880.16006
  4. [4] F. U. Coelho, Ma. I. R. Martins and J. A. de la Peña, Quasitilted extensions of algebras I, Proc. Amer. Math. Soc., to appear. Zbl0970.16009
  5. [5] F. U. Coelho, Ma. I. R. Martins and J. A. de la Peña, Quasitilted extensions of algebras II, J. Algebra, to appear. 
  6. [6] F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82. Zbl0848.16012
  7. [7] P. Dräxler and J. A. de la Peña, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), 457-469. Zbl0902.16017
  8. [8] D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996). Zbl0849.16011
  9. [9] D. Happel and C. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. 
  10. [10] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181. Zbl0870.16007
  11. [11] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 61 (1993), 505-523. Zbl0818.16014
  12. [12] J. A. de la Peña and I. Reiten, Trisection of module categories, to appear. 
  13. [13] A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490. Zbl0908.16013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.