On Auslander–Reiten components for quasitilted algebras

Flávio Coelho; Andrzej Skowroński

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 1, page 67-82
  • ISSN: 0016-2736

Abstract

top
An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver Γ A of a quasitilted algebra A.

How to cite

top

Coelho, Flávio, and Skowroński, Andrzej. "On Auslander–Reiten components for quasitilted algebras." Fundamenta Mathematicae 149.1 (1996): 67-82. <http://eudml.org/doc/212109>.

@article{Coelho1996,
abstract = {An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver $Γ_A$ of a quasitilted algebra A.},
author = {Coelho, Flávio, Skowroński, Andrzej},
journal = {Fundamenta Mathematicae},
keywords = {quasitilted algebras; tilting pairs; tilted algebras; tilting processes; module categories; Auslander-Reiten quivers; AR-components},
language = {eng},
number = {1},
pages = {67-82},
title = {On Auslander–Reiten components for quasitilted algebras},
url = {http://eudml.org/doc/212109},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Coelho, Flávio
AU - Skowroński, Andrzej
TI - On Auslander–Reiten components for quasitilted algebras
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 1
SP - 67
EP - 82
AB - An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver $Γ_A$ of a quasitilted algebra A.
LA - eng
KW - quasitilted algebras; tilting pairs; tilted algebras; tilting processes; module categories; Auslander-Reiten quivers; AR-components
UR - http://eudml.org/doc/212109
ER -

References

top
  1. [1] I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243. Zbl0821.16015
  2. [2] M. Auslander and I. Reiten, Representation theory of artin algebras V, Comm. Algebra 5 (1977), 519-554. 
  3. [3] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. Zbl0834.16001
  4. [4] R. Bautista and S. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767. Zbl0515.16013
  5. [5] F. U. Coelho, Components of Auslander-Reiten quivers containing only preprojective modules, J. Algebra 157 (1993), 472-488. Zbl0793.16008
  6. [6] F. U. Coelho, A note on preinjective partial tilting modules, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1994, 109-115. 
  7. [7] F. U. Coelho, E. N. Marcos, H. A. Merklen and A. Skowroński, Domestic semiregular branch enlargements of tame concealed algebras, in: Representations of Algebras, ICRA VII, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. Zbl0860.16013
  8. [8] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976). 
  9. [9] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterisation of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294. Zbl0446.16032
  10. [10] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. Zbl0503.16024
  11. [11] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., in press. Zbl0849.16011
  12. [12] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
  13. [13] O. Kerner, Stable components of wild tilted algebra, J. Algebra 142 (1991), 37-57. Zbl0737.16007
  14. [14] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., in press. 
  15. [15] H. Lenzing and J. A. de la Pe na, Algebras with a separating tubular family, preprint, 1995. 
  16. [16] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416. Zbl0818.16015
  17. [17] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 161 (1993), 505-523. Zbl0818.16014
  18. [18] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255. Zbl0415.16023
  19. [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  20. [20] C. M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. 9B (1988), 1-18. Zbl0667.16024
  21. [21] C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 407-432. 
  22. [22] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19-26. Zbl0831.16014
  23. [23] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. Zbl0822.16010
  24. [24] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), 105-116. Zbl0841.16020
  25. [25] A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, ICRA, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. Zbl0865.16013
  26. [26] A. Skowroński, Module categories with finite short cycles, in preparation. Zbl0819.16013
  27. [27] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. Zbl0746.16009
  28. [28] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. Zbl0736.16007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.