On Auslander–Reiten components for quasitilted algebras
Flávio Coelho; Andrzej Skowroński
Fundamenta Mathematicae (1996)
- Volume: 149, Issue: 1, page 67-82
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243. Zbl0821.16015
- [2] M. Auslander and I. Reiten, Representation theory of artin algebras V, Comm. Algebra 5 (1977), 519-554.
- [3] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. Zbl0834.16001
- [4] R. Bautista and S. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767. Zbl0515.16013
- [5] F. U. Coelho, Components of Auslander-Reiten quivers containing only preprojective modules, J. Algebra 157 (1993), 472-488. Zbl0793.16008
- [6] F. U. Coelho, A note on preinjective partial tilting modules, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1994, 109-115.
- [7] F. U. Coelho, E. N. Marcos, H. A. Merklen and A. Skowroński, Domestic semiregular branch enlargements of tame concealed algebras, in: Representations of Algebras, ICRA VII, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. Zbl0860.16013
- [8] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
- [9] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterisation of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294. Zbl0446.16032
- [10] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. Zbl0503.16024
- [11] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., in press. Zbl0849.16011
- [12] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
- [13] O. Kerner, Stable components of wild tilted algebra, J. Algebra 142 (1991), 37-57. Zbl0737.16007
- [14] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., in press.
- [15] H. Lenzing and J. A. de la Pe na, Algebras with a separating tubular family, preprint, 1995.
- [16] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416. Zbl0818.16015
- [17] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 161 (1993), 505-523. Zbl0818.16014
- [18] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255. Zbl0415.16023
- [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [20] C. M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. 9B (1988), 1-18. Zbl0667.16024
- [21] C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 407-432.
- [22] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19-26. Zbl0831.16014
- [23] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. Zbl0822.16010
- [24] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), 105-116. Zbl0841.16020
- [25] A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, ICRA, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. Zbl0865.16013
- [26] A. Skowroński, Module categories with finite short cycles, in preparation. Zbl0819.16013
- [27] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. Zbl0746.16009
- [28] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. Zbl0736.16007
Citations in EuDML Documents
top- Andrzej Skowroński, On artin algebras with almost all indecomposable modules of projective or injective dimension at most one
- Flávio Coelho, Directing components for quasitilted algebras
- Ole Enge, Quasitilted algebras have preprojective components
- Helmut Lenzing, Andrzej Skowroński, Quasi-tilted algebras of canonical type