On Auslander–Reiten components for quasitilted algebras

Flávio Coelho; Andrzej Skowroński

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 1, page 67-82
  • ISSN: 0016-2736

Abstract

top
An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver of a quasitilted algebra A.

How to cite

top

Coelho, Flávio, and Skowroński, Andrzej. "On Auslander–Reiten components for quasitilted algebras." Fundamenta Mathematicae 149.1 (1996): 67-82. <http://eudml.org/doc/212109>.

@article{Coelho1996,
abstract = {An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver $Γ_A$ of a quasitilted algebra A.},
author = {Coelho, Flávio, Skowroński, Andrzej},
journal = {Fundamenta Mathematicae},
keywords = {quasitilted algebras; tilting pairs; tilted algebras; tilting processes; module categories; Auslander-Reiten quivers; AR-components},
language = {eng},
number = {1},
pages = {67-82},
title = {On Auslander–Reiten components for quasitilted algebras},
url = {http://eudml.org/doc/212109},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Coelho, Flávio
AU - Skowroński, Andrzej
TI - On Auslander–Reiten components for quasitilted algebras
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 1
SP - 67
EP - 82
AB - An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver $Γ_A$ of a quasitilted algebra A.
LA - eng
KW - quasitilted algebras; tilting pairs; tilted algebras; tilting processes; module categories; Auslander-Reiten quivers; AR-components
UR - http://eudml.org/doc/212109
ER -

References

top
  1. [1] I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243. Zbl0821.16015
  2. [2] M. Auslander and I. Reiten, Representation theory of artin algebras V, Comm. Algebra 5 (1977), 519-554. 
  3. [3] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995. Zbl0834.16001
  4. [4] R. Bautista and S. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767. Zbl0515.16013
  5. [5] F. U. Coelho, Components of Auslander-Reiten quivers containing only preprojective modules, J. Algebra 157 (1993), 472-488. Zbl0793.16008
  6. [6] F. U. Coelho, A note on preinjective partial tilting modules, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1994, 109-115. 
  7. [7] F. U. Coelho, E. N. Marcos, H. A. Merklen and A. Skowroński, Domestic semiregular branch enlargements of tame concealed algebras, in: Representations of Algebras, ICRA VII, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. Zbl0860.16013
  8. [8] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976). 
  9. [9] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterisation of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294. Zbl0446.16032
  10. [10] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. Zbl0503.16024
  11. [11] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., in press. Zbl0849.16011
  12. [12] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. Zbl0675.16013
  13. [13] O. Kerner, Stable components of wild tilted algebra, J. Algebra 142 (1991), 37-57. Zbl0737.16007
  14. [14] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., in press. 
  15. [15] H. Lenzing and J. A. de la Pe na, Algebras with a separating tubular family, preprint, 1995. 
  16. [16] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416. Zbl0818.16015
  17. [17] S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 161 (1993), 505-523. Zbl0818.16014
  18. [18] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255. Zbl0415.16023
  19. [19] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  20. [20] C. M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. 9B (1988), 1-18. Zbl0667.16024
  21. [21] C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 407-432. 
  22. [22] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19-26. Zbl0831.16014
  23. [23] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. Zbl0822.16010
  24. [24] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), 105-116. Zbl0841.16020
  25. [25] A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, ICRA, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press. Zbl0865.16013
  26. [26] A. Skowroński, Module categories with finite short cycles, in preparation. Zbl0819.16013
  27. [27] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66. Zbl0746.16009
  28. [28] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. Zbl0736.16007

NotesEmbed ?

top

You must be logged in to post comments.