Extending generalized Whitney maps

Ivan Lončar

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 2, page 65-76
  • ISSN: 0044-8753

Abstract

top
For metrizable continua, there exists the well-known notion of a Whitney map. If X is a nonempty, compact, and metric space, then any Whitney map for any closed subset of 2 X can be extended to a Whitney map for 2 X [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.

How to cite

top

Lončar, Ivan. "Extending generalized Whitney maps." Archivum Mathematicum 053.2 (2017): 65-76. <http://eudml.org/doc/288188>.

@article{Lončar2017,
abstract = {For metrizable continua, there exists the well-known notion of a Whitney map. If $X$ is a nonempty, compact, and metric space, then any Whitney map for any closed subset of $2^\{X\}$ can be extended to a Whitney map for $2^\{X\}$ [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.},
author = {Lončar, Ivan},
journal = {Archivum Mathematicum},
keywords = {extending generalized Whitney map; hyperspace},
language = {eng},
number = {2},
pages = {65-76},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Extending generalized Whitney maps},
url = {http://eudml.org/doc/288188},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Lončar, Ivan
TI - Extending generalized Whitney maps
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 2
SP - 65
EP - 76
AB - For metrizable continua, there exists the well-known notion of a Whitney map. If $X$ is a nonempty, compact, and metric space, then any Whitney map for any closed subset of $2^{X}$ can be extended to a Whitney map for $2^{X}$ [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.
LA - eng
KW - extending generalized Whitney map; hyperspace
UR - http://eudml.org/doc/288188
ER -

References

top
  1. Charatonik, J.J., Charatonik, W.J., Whitney maps—a non-metric case, Colloq. Math. 83 (2) (2000), 305–307. (2000) Zbl0953.54013MR1758323
  2. Engelking, R., General Topology, PWN Warszawa, 1977. (1977) Zbl0373.54002MR0500780
  3. Illanes, A., Nadler, Jr., S.B., Hyperspaces: Fundamentals and Recent advances, Marcel Dekker, New York-Basel, 1999. (1999) Zbl0933.54009MR1670250
  4. Jones, F.B., 10.2307/2371367, Amer. J. Math. 63 (1941), 545–553. (1941) Zbl0025.24003MR0004771DOI10.2307/2371367
  5. Kelley, J.L., 10.1090/S0002-9947-1942-0006505-8, Trans. Amer. Math. Soc. 52 (1942), 22–36. (1942) Zbl0061.40107MR0006505DOI10.1090/S0002-9947-1942-0006505-8
  6. Lončar, I., 10.2298/PIM0373097L, Publ. Inst. Math. (Beograd) (N.S.) 73 (87) (2003), 97–113. (2003) Zbl1054.54026MR2068242DOI10.2298/PIM0373097L
  7. Michael, E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71 (1951), 152–182. (1951) Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
  8. Nadler, S.B., Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978. (1978) Zbl0432.54007MR0500811
  9. Nadler, S.B., Continuum theory, Marcel Dekker, Inc., New York, 1992. (1992) Zbl0757.54009MR1192552
  10. Smith, M., Stone, J., 10.1016/j.topol.2014.02.007, Topology Appl. 170 (2014), 63–85. (2014) Zbl1296.54037MR3200390DOI10.1016/j.topol.2014.02.007
  11. Stone, J., Non-metric continua that support Whitney maps, Dissertation. Zbl1296.54037
  12. Ward, L.E., 10.2140/pjm.1981.93.465, Pacific J. Math. 93 (1981), 465–470. (1981) Zbl0457.54008MR0623577DOI10.2140/pjm.1981.93.465
  13. Whitney, H., 10.1073/pnas.18.3.275, Proc. Nat. Acad. Sci. 18 (1932), 275–278. (1932) Zbl0004.07503DOI10.1073/pnas.18.3.275
  14. Whitney, H., 10.2307/1968202, Ann. of Math. (2) 34 (1933), 244–270. (1933) Zbl0006.37101MR1503106DOI10.2307/1968202
  15. Wilder, B.E., Between aposyndetic and indecomposable continua, Topology Proc. 17 (1992), 325–331. (1992) Zbl0788.54041MR1255815

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.