Page 1 Next

Displaying 1 – 20 of 25

Showing per page

Average convergence rate of the first return time

Geon Choe, Dong Kim (2000)

Colloquium Mathematicae

The convergence rate of the expectation of the logarithm of the first return time R n , after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have l o g [ R n ( x ) P n ( x ) ] = o ( n β ) a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have - ( 1 + ε ) l o g n l o g [ R n ( x ) P n ( x ) ] l o g l o g n eventually, a.s., where P n ( x ) is the probability of the initial n-block in x. In this paper we prove that E [ l o g R ( L , S ) - ( L - 1 ) h ] converges to a constant depending only on the process where R ( L , S ) is the modified first return time with...

On typical encodings of multivariate ergodic sources

Michal Kupsa (2020)

Kybernetika

We show that the typical coordinate-wise encoding of multivariate ergodic source into prescribed alphabets has the entropy profile close to the convolution of the entropy profile of the source and the modular polymatroid that is determined by the cardinalities of the output alphabets. We show that the proportion of the exceptional encodings that are not close to the convolution goes to zero doubly exponentially. The result holds for a class of multivariate sources that satisfy asymptotic equipartition...

Currently displaying 1 – 20 of 25

Page 1 Next