Infinite families of noncototients
Colloquium Mathematicae (2000)
- Volume: 86, Issue: 1, page 37-41
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topFlammenkamp, A., and Luca, F.. "Infinite families of noncototients." Colloquium Mathematicae 86.1 (2000): 37-41. <http://eudml.org/doc/210840>.
@article{Flammenkamp2000,
	abstract = {For any positive integer $n$ let ϕ(n) be the Euler function of n. A positive integer $n$ is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression $(2^mk)_\{m ≥ 1\}$ consists entirely of noncototients. We then use computations to detect seven such positive integers k.},
	author = {Flammenkamp, A., Luca, F.},
	journal = {Colloquium Mathematicae},
	keywords = {Euler's function; noncototient},
	language = {eng},
	number = {1},
	pages = {37-41},
	title = {Infinite families of noncototients},
	url = {http://eudml.org/doc/210840},
	volume = {86},
	year = {2000},
}
TY  - JOUR
AU  - Flammenkamp, A.
AU  - Luca, F.
TI  - Infinite families of noncototients
JO  - Colloquium Mathematicae
PY  - 2000
VL  - 86
IS  - 1
SP  - 37
EP  - 41
AB  - For any positive integer $n$ let ϕ(n) be the Euler function of n. A positive integer $n$ is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression $(2^mk)_{m ≥ 1}$ consists entirely of noncototients. We then use computations to detect seven such positive integers k.
LA  - eng
KW  - Euler's function; noncototient
UR  - http://eudml.org/doc/210840
ER  - 
References
top- [1] J. Browkin and A. Schinzel, On integers not of the form n-ϕ(n), Colloq. Math. 68 (1995), 55-58. Zbl0820.11003
- [2] P. Erdős, On integers of the form and related problems, Summa Brasil. Math. 2 (1950), 113-123.
- [3] R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.
- [4] H. Riesel, Nοgra stora primtal [Some large primes], Elementa 39 (1956), 258-260 (in Swedish).
- [5] W. Sierpiński, Sur un problème concernant les nombres , Elem. Math. 15 (1960), 73-74; Corrigendum, ibid. 17 (1962), 85. Zbl0093.04602
- [6] The Riesel Problem, http:/vamri.xray.ufl.edu/proths/rieselprob.html.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 