# Some examples of true ${F}_{\sigma \delta}$ sets

Colloquium Mathematicae (2000)

- Volume: 86, Issue: 2, page 203-207
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topBalcerzak, Marek, and Darji, Udayan. "Some examples of true $F_{σδ}$ sets." Colloquium Mathematicae 86.2 (2000): 203-207. <http://eudml.org/doc/210850>.

@article{Balcerzak2000,

abstract = {Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true $F_\{σδ\}$ sets.},

author = {Balcerzak, Marek, Darji, Udayan},

journal = {Colloquium Mathematicae},

keywords = {Borel set; hyperspace; compact metric space; Borel sets},

language = {eng},

number = {2},

pages = {203-207},

title = {Some examples of true $F_\{σδ\}$ sets},

url = {http://eudml.org/doc/210850},

volume = {86},

year = {2000},

}

TY - JOUR

AU - Balcerzak, Marek

AU - Darji, Udayan

TI - Some examples of true $F_{σδ}$ sets

JO - Colloquium Mathematicae

PY - 2000

VL - 86

IS - 2

SP - 203

EP - 207

AB - Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true $F_{σδ}$ sets.

LA - eng

KW - Borel set; hyperspace; compact metric space; Borel sets

UR - http://eudml.org/doc/210850

ER -

## References

top- [1] Z. Buczolich, Cantor type sets of positive measure and Lipschitz mappings, Real Anal. Exchange 17 (1991-92), 702-705. Zbl0858.28002
- [2] H. Hashimoto, On the *topology and its application, Fund. Math. 91 (1976), 5-10. Zbl0357.54002
- [3] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310. Zbl0723.54005
- [4] W. Just and C. Laflamme, Classifying sets of measure zero with respect to their open covers, Trans. Amer. Math. Soc. 321 (1990), 621-645. Zbl0716.28003
- [5] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1994.
- [6] A. S. Kechris, A. Louveau and H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl0633.03043
- [7] A. Louveau, σ-idéaux engendrés par des ensembles fermés et théorèmes d'approximation, ibid. 257 (1980), 143-169.
- [8] E. Matheron, How to recognize a true ${\Sigma}_{3}^{0}$ set, Fund. Math. 158 (1998), 181-194. Zbl0919.43003

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.