Some examples of true F σ δ sets

Marek Balcerzak; Udayan Darji

Colloquium Mathematicae (2000)

  • Volume: 86, Issue: 2, page 203-207
  • ISSN: 0010-1354

Abstract

top
Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true F σ δ sets.

How to cite

top

Balcerzak, Marek, and Darji, Udayan. "Some examples of true $F_{σδ}$ sets." Colloquium Mathematicae 86.2 (2000): 203-207. <http://eudml.org/doc/210850>.

@article{Balcerzak2000,
abstract = {Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true $F_\{σδ\}$ sets.},
author = {Balcerzak, Marek, Darji, Udayan},
journal = {Colloquium Mathematicae},
keywords = {Borel set; hyperspace; compact metric space; Borel sets},
language = {eng},
number = {2},
pages = {203-207},
title = {Some examples of true $F_\{σδ\}$ sets},
url = {http://eudml.org/doc/210850},
volume = {86},
year = {2000},
}

TY - JOUR
AU - Balcerzak, Marek
AU - Darji, Udayan
TI - Some examples of true $F_{σδ}$ sets
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 2
SP - 203
EP - 207
AB - Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true $F_{σδ}$ sets.
LA - eng
KW - Borel set; hyperspace; compact metric space; Borel sets
UR - http://eudml.org/doc/210850
ER -

References

top
  1. [1] Z. Buczolich, Cantor type sets of positive measure and Lipschitz mappings, Real Anal. Exchange 17 (1991-92), 702-705. Zbl0858.28002
  2. [2] H. Hashimoto, On the *topology and its application, Fund. Math. 91 (1976), 5-10. Zbl0357.54002
  3. [3] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310. Zbl0723.54005
  4. [4] W. Just and C. Laflamme, Classifying sets of measure zero with respect to their open covers, Trans. Amer. Math. Soc. 321 (1990), 621-645. Zbl0716.28003
  5. [5] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1994. 
  6. [6] A. S. Kechris, A. Louveau and H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl0633.03043
  7. [7] A. Louveau, σ-idéaux engendrés par des ensembles fermés et théorèmes d'approximation, ibid. 257 (1980), 143-169. 
  8. [8] E. Matheron, How to recognize a true Σ 3 0 set, Fund. Math. 158 (1998), 181-194. Zbl0919.43003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.