How to recognize a true Σ^0_3 set
Fundamenta Mathematicae (1998)
- Volume: 158, Issue: 2, page 181-194
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topMatheron, Etienne. "How to recognize a true Σ^0_3 set." Fundamenta Mathematicae 158.2 (1998): 181-194. <http://eudml.org/doc/212310>.
@article{Matheron1998,
abstract = {Let X be a Polish space, and let $(A_p)_\{p∈ω\}$ be a sequence of $G_δ$ hereditary subsets of K(X) (the space of compact subsets of X). We give a general criterion which allows one to decide whether $∪_\{p∈ω\}A _p$ is a true $∑_3^0$ subset of K(X). We apply this criterion to show that several natural families of thin sets from harmonic analysis are true $∑_3^0$.},
author = {Matheron, Etienne},
journal = {Fundamenta Mathematicae},
keywords = {true set; ideal of ; Polish space; ideal of compact sets},
language = {eng},
number = {2},
pages = {181-194},
title = {How to recognize a true Σ^0\_3 set},
url = {http://eudml.org/doc/212310},
volume = {158},
year = {1998},
}
TY - JOUR
AU - Matheron, Etienne
TI - How to recognize a true Σ^0_3 set
JO - Fundamenta Mathematicae
PY - 1998
VL - 158
IS - 2
SP - 181
EP - 194
AB - Let X be a Polish space, and let $(A_p)_{p∈ω}$ be a sequence of $G_δ$ hereditary subsets of K(X) (the space of compact subsets of X). We give a general criterion which allows one to decide whether $∪_{p∈ω}A _p$ is a true $∑_3^0$ subset of K(X). We apply this criterion to show that several natural families of thin sets from harmonic analysis are true $∑_3^0$.
LA - eng
KW - true set; ideal of ; Polish space; ideal of compact sets
UR - http://eudml.org/doc/212310
ER -
References
top- [GMG] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.
- [G] M. B. Gregory, p-Helson sets, 1 < p < 2, Israel J. Math. 12 (1972), 356-368.
- [Ke1] A. S. Kechris, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, ibid. 73 (1991), 189-198.
- [Ke2] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
- [KL] A. S. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987. Zbl0642.42014
- [LP] L.-A. Lindahl and A. Poulsen, Thin Sets in Harmonic Analysis, Marcel Dekker, New York, 1971.
- [Li] T. Linton, The H-sets of the unit circle are properly , Real Anal. Exchange 19 (1994), 203-211.
- [Ly] R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458. Zbl0677.42006
- [M] E. Matheron, The descriptive complexity of Helson sets, Illinois J. Math. 39 (1995), 608-625. Zbl0843.43004
- [T] V. Tardivel, Fermés d'unicité dans les groupes abéliens localement compacts, Studia Math. 91 (1988), 1-15. Zbl0666.43002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.