How to recognize a true Σ^0_3 set
Fundamenta Mathematicae (1998)
- Volume: 158, Issue: 2, page 181-194
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [GMG] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.
- [G] M. B. Gregory, p-Helson sets, 1 < p < 2, Israel J. Math. 12 (1972), 356-368.
- [Ke1] A. S. Kechris, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, ibid. 73 (1991), 189-198.
- [Ke2] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
- [KL] A. S. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987. Zbl0642.42014
- [LP] L.-A. Lindahl and A. Poulsen, Thin Sets in Harmonic Analysis, Marcel Dekker, New York, 1971.
- [Li] T. Linton, The H-sets of the unit circle are properly , Real Anal. Exchange 19 (1994), 203-211.
- [Ly] R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458. Zbl0677.42006
- [M] E. Matheron, The descriptive complexity of Helson sets, Illinois J. Math. 39 (1995), 608-625. Zbl0843.43004
- [T] V. Tardivel, Fermés d'unicité dans les groupes abéliens localement compacts, Studia Math. 91 (1988), 1-15. Zbl0666.43002