A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism
Fundamenta Mathematicae (1981)
- Volume: 114, Issue: 2, page 159-171
- ISSN: 0016-2736
Access Full Article
topHow to cite
topAoki, Nobuo. "A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism." Fundamenta Mathematicae 114.2 (1981): 159-171. <http://eudml.org/doc/211294>.
@article{Aoki1981,
author = {Aoki, Nobuo},
journal = {Fundamenta Mathematicae},
keywords = {compact abelian group; entropy; Bernoulli; automorphism; sigma-invariant subgroups},
language = {eng},
number = {2},
pages = {159-171},
title = {A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism},
url = {http://eudml.org/doc/211294},
volume = {114},
year = {1981},
}
TY - JOUR
AU - Aoki, Nobuo
TI - A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism
JO - Fundamenta Mathematicae
PY - 1981
VL - 114
IS - 2
SP - 159
EP - 171
LA - eng
KW - compact abelian group; entropy; Bernoulli; automorphism; sigma-invariant subgroups
UR - http://eudml.org/doc/211294
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.