The covering property for σ-ideals of compact, sets

Carlos Uzcátegui

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 2, page 119-146
  • ISSN: 0016-2736

Abstract

top
The covering property for σ-ideals of compact sets is an abstract version of the classical perfect set theorem for analytic sets. We will study its consequences using as a paradigm the σ-ideal of countable closed subsets of 2 ω .

How to cite

top

Uzcátegui, Carlos. "The covering property for σ-ideals of compact, sets." Fundamenta Mathematicae 141.2 (1992): 119-146. <http://eudml.org/doc/211957>.

@article{Uzcátegui1992,
abstract = {The covering property for σ-ideals of compact sets is an abstract version of the classical perfect set theorem for analytic sets. We will study its consequences using as a paradigm the σ-ideal of countable closed subsets of $2^ω$.},
author = {Uzcátegui, Carlos},
journal = {Fundamenta Mathematicae},
keywords = {ideals of compact sets; metric space; covering property},
language = {eng},
number = {2},
pages = {119-146},
title = {The covering property for σ-ideals of compact, sets},
url = {http://eudml.org/doc/211957},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Uzcátegui, Carlos
TI - The covering property for σ-ideals of compact, sets
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 2
SP - 119
EP - 146
AB - The covering property for σ-ideals of compact sets is an abstract version of the classical perfect set theorem for analytic sets. We will study its consequences using as a paradigm the σ-ideal of countable closed subsets of $2^ω$.
LA - eng
KW - ideals of compact sets; metric space; covering property
UR - http://eudml.org/doc/211957
ER -

References

top
  1. [1] R. Barua and V. V. Srivatsa, Definable hereditary families in the projective hierarchy, Fund. Math. 140 (1992), 183-189. Zbl0809.04003
  2. [2] G. Debs et J. Saint Raymond, Ensembles boréliens d'unicité et d'unicité au sens large, Ann. Inst. Fourier (Grenoble) 37 (3) (1987), 217-239. Zbl0618.42004
  3. [3] A. S. Kechris, The theory of countable analytical sets, Trans. Amer. Math. Soc. 202 (1975), 259-297. Zbl0317.02082
  4. [4] A. S. Kechris, On a notion of smallness for subsets of the Baire space, ibid. 229 (1977), 191-207. 
  5. [5] A. S. Kechris, Countable ordinals and the analytical hierarchy (II), Ann. Math. Logic 15 (1978), 193-223. Zbl0449.03047
  6. [6] A. S. Kechris, The descriptive set theory of σ-ideals of compact sets, in: Logic Colloquium '88, R. Ferro, C. Bonotto, S. Valentini and A. Zanardo (eds.), North-Holland, 1979, 117-138. 
  7. [7] A. S. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987. Zbl0642.42014
  8. [8] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl0633.03043
  9. [9] A. Louveau, σ-idéaux engendrés par des ensembles fermés et théorèmes d'approximation, ibid. 257 (1980), 143-169. 
  10. [10] D. A. Martin and A. S. Kechris, Infinite games and effective descriptive set theory, in: Analytic Sets, by C. A. Rogers et al., Academic Press, 1980, 403-499. 
  11. [11] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980. 
  12. [12] J. Oxtoby, Measure and Category, Springer, New York 1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.