# On soluble groups of automorphisms of nonorientable Klein surfaces

Fundamenta Mathematicae (1992)

- Volume: 141, Issue: 3, page 215-227
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topGromadzki, G.. "On soluble groups of automorphisms of nonorientable Klein surfaces." Fundamenta Mathematicae 141.3 (1992): 215-227. <http://eudml.org/doc/211961>.

@article{Gromadzki1992,

abstract = {We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.},

author = {Gromadzki, G.},

journal = {Fundamenta Mathematicae},

keywords = {Riemann surfaces; Klein surfaces; automorphism groups; soluble groups; symmetries of surfaces; automorphisms; compact Riemann surfaces; compact non-orientable Klein surfaces; soluble group of automorphisms; maximal symmetry groups; bordered Klein surfaces; maximal symmetry},

language = {eng},

number = {3},

pages = {215-227},

title = {On soluble groups of automorphisms of nonorientable Klein surfaces},

url = {http://eudml.org/doc/211961},

volume = {141},

year = {1992},

}

TY - JOUR

AU - Gromadzki, G.

TI - On soluble groups of automorphisms of nonorientable Klein surfaces

JO - Fundamenta Mathematicae

PY - 1992

VL - 141

IS - 3

SP - 215

EP - 227

AB - We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.

LA - eng

KW - Riemann surfaces; Klein surfaces; automorphism groups; soluble groups; symmetries of surfaces; automorphisms; compact Riemann surfaces; compact non-orientable Klein surfaces; soluble group of automorphisms; maximal symmetry groups; bordered Klein surfaces; maximal symmetry

UR - http://eudml.org/doc/211961

ER -

## References

top- [1] N. L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Math. 219, Springer, 1971.
- [2] E. Bujalance, Proper periods of normal NEC subgroups with even index, Rev. Math. Hisp.-Amer. 41 (4) (1981), 121-127. Zbl0513.20035
- [3] E. Bujalance, Normal subgroups of NEC groups, Math. Z. 178 (1981), 331-341. Zbl0451.20047
- [4] E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces, Lecture Notes in Math. 1439, Springer, 1990. Zbl0709.14021
- [5] E. Bujalance and G. Gromadzki, On nilpotent groups of automorphisms of compact Klein surfaces, Proc. Amer. Math. Soc. 108 (3) (1990), 749-759. Zbl0696.30047
- [6] B. P. Chetiya, Groups of automorphisms of compact Riemann surfaces, Ph.D. thesis, Birmingham University, 1981. Zbl0493.30025
- [7] B. P. Chetiya, On genuses of compact Riemann surfaces admitting solvable automorphism groups, Indian J. Pure Appl. Math. 12 (1981), 1312-1318. Zbl0493.30025
- [8] B. P. Chetiya and K. Patra, On metabelian groups of automorphisms of compact Riemann surfaces, J. London Math. Soc. 33 (1986), 467-472. Zbl0571.30036
- [9] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Ergeb. Math. Grenzgeb. 14, Springer, Berlin 1972. Zbl0239.20040
- [10] N. Greenleaf and C. L. May, Bordered Klein surfaces with maximal symmetry, Trans. Amer. Math. Soc. 274 (1982), 265-283. Zbl0504.14020
- [11] G. Gromadzki, On soluble groups of automorphisms of Riemann surfaces, Canad. Math. Bull. 34 (1) (1991), 67-73. Zbl0743.30041
- [12] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 403-442.
- [13] A. M. Macbeath, The classification of non-euclidean plane crystallographic groups, Canad. J. Math. 19 (1967), 1192-1205. Zbl0183.03402
- [14] C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975). 199-210. Zbl0422.30037
- [15] C. L. May, Large automorphism groups of compact Klein surfaces with boundary I, Glasgow Math. J. 18 (1977), 1-10. Zbl0363.14008
- [16] C. L. May, The species of Klein surfaces with maximal symmetry of low genus, Pacific J. Math. 111 (2) (1984), 371-394. Zbl0504.14021
- [17] C. L. May, Supersolvable M*-groups, Glasgow Math. J. 30 (1988), 31-40.
- [18] K. Oikawa, Note on conformal mappings of a Riemann surface onto itself, Kodai Math. Sem. Rep. 8 (1956), 23-30. Zbl0072.07702
- [19] R. Preston, Projective structures and fundamental domains on compact Klein surfaces, Ph.D. thesis, Univ. of Texas, 1975.
- [20] D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50-59. Zbl0232.30012
- [21] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233-240. Zbl0284.20053
- [22] D. Singerman, Orientable and non-orientable Klein surfaces with maximal symmetry, Glasgow Math. J. 26 (1985), 31-34. Zbl0561.30037
- [23] M. C. Wilkie, On non-euclidean crystallographic groups, Math. Z. 91 (1966), 87-102. Zbl0166.02602

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.