On soluble groups of automorphisms of nonorientable Klein surfaces

G. Gromadzki

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 3, page 215-227
  • ISSN: 0016-2736

Abstract

top
We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.

How to cite

top

Gromadzki, G.. "On soluble groups of automorphisms of nonorientable Klein surfaces." Fundamenta Mathematicae 141.3 (1992): 215-227. <http://eudml.org/doc/211961>.

@article{Gromadzki1992,
abstract = {We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.},
author = {Gromadzki, G.},
journal = {Fundamenta Mathematicae},
keywords = {Riemann surfaces; Klein surfaces; automorphism groups; soluble groups; symmetries of surfaces; automorphisms; compact Riemann surfaces; compact non-orientable Klein surfaces; soluble group of automorphisms; maximal symmetry groups; bordered Klein surfaces; maximal symmetry},
language = {eng},
number = {3},
pages = {215-227},
title = {On soluble groups of automorphisms of nonorientable Klein surfaces},
url = {http://eudml.org/doc/211961},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Gromadzki, G.
TI - On soluble groups of automorphisms of nonorientable Klein surfaces
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 3
SP - 215
EP - 227
AB - We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.
LA - eng
KW - Riemann surfaces; Klein surfaces; automorphism groups; soluble groups; symmetries of surfaces; automorphisms; compact Riemann surfaces; compact non-orientable Klein surfaces; soluble group of automorphisms; maximal symmetry groups; bordered Klein surfaces; maximal symmetry
UR - http://eudml.org/doc/211961
ER -

References

top
  1. [1] N. L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Math. 219, Springer, 1971. 
  2. [2] E. Bujalance, Proper periods of normal NEC subgroups with even index, Rev. Math. Hisp.-Amer. 41 (4) (1981), 121-127. Zbl0513.20035
  3. [3] E. Bujalance, Normal subgroups of NEC groups, Math. Z. 178 (1981), 331-341. Zbl0451.20047
  4. [4] E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces, Lecture Notes in Math. 1439, Springer, 1990. Zbl0709.14021
  5. [5] E. Bujalance and G. Gromadzki, On nilpotent groups of automorphisms of compact Klein surfaces, Proc. Amer. Math. Soc. 108 (3) (1990), 749-759. Zbl0696.30047
  6. [6] B. P. Chetiya, Groups of automorphisms of compact Riemann surfaces, Ph.D. thesis, Birmingham University, 1981. Zbl0493.30025
  7. [7] B. P. Chetiya, On genuses of compact Riemann surfaces admitting solvable automorphism groups, Indian J. Pure Appl. Math. 12 (1981), 1312-1318. Zbl0493.30025
  8. [8] B. P. Chetiya and K. Patra, On metabelian groups of automorphisms of compact Riemann surfaces, J. London Math. Soc. 33 (1986), 467-472. Zbl0571.30036
  9. [9] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Ergeb. Math. Grenzgeb. 14, Springer, Berlin 1972. Zbl0239.20040
  10. [10] N. Greenleaf and C. L. May, Bordered Klein surfaces with maximal symmetry, Trans. Amer. Math. Soc. 274 (1982), 265-283. Zbl0504.14020
  11. [11] G. Gromadzki, On soluble groups of automorphisms of Riemann surfaces, Canad. Math. Bull. 34 (1) (1991), 67-73. Zbl0743.30041
  12. [12] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 403-442. 
  13. [13] A. M. Macbeath, The classification of non-euclidean plane crystallographic groups, Canad. J. Math. 19 (1967), 1192-1205. Zbl0183.03402
  14. [14] C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975). 199-210. Zbl0422.30037
  15. [15] C. L. May, Large automorphism groups of compact Klein surfaces with boundary I, Glasgow Math. J. 18 (1977), 1-10. Zbl0363.14008
  16. [16] C. L. May, The species of Klein surfaces with maximal symmetry of low genus, Pacific J. Math. 111 (2) (1984), 371-394. Zbl0504.14021
  17. [17] C. L. May, Supersolvable M*-groups, Glasgow Math. J. 30 (1988), 31-40. 
  18. [18] K. Oikawa, Note on conformal mappings of a Riemann surface onto itself, Kodai Math. Sem. Rep. 8 (1956), 23-30. Zbl0072.07702
  19. [19] R. Preston, Projective structures and fundamental domains on compact Klein surfaces, Ph.D. thesis, Univ. of Texas, 1975. 
  20. [20] D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50-59. Zbl0232.30012
  21. [21] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233-240. Zbl0284.20053
  22. [22] D. Singerman, Orientable and non-orientable Klein surfaces with maximal symmetry, Glasgow Math. J. 26 (1985), 31-34. Zbl0561.30037
  23. [23] M. C. Wilkie, On non-euclidean crystallographic groups, Math. Z. 91 (1966), 87-102. Zbl0166.02602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.