Hyperspaces of Peano continua of euclidean spaces
Fundamenta Mathematicae (1993)
- Volume: 142, Issue: 2, page 173-188
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topGladdines, Helma, and van Mill, Jan. "Hyperspaces of Peano continua of euclidean spaces." Fundamenta Mathematicae 142.2 (1993): 173-188. <http://eudml.org/doc/211980>.
@article{Gladdines1993,
abstract = {If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space $L(ℝ^n)$ is homeomorphic to $B^∞$, where B denotes the pseudo-boundary of the Hilbert cube Q.},
author = {Gladdines, Helma, van Mill, Jan},
journal = {Fundamenta Mathematicae},
keywords = {Hilbert cube; Hilbert space; absorbing system; Z-set; $F_\{σδ\}$; hyperspace; Peano continuum; $ℝ^n$; Vietoris topology; Peano-continua},
language = {eng},
number = {2},
pages = {173-188},
title = {Hyperspaces of Peano continua of euclidean spaces},
url = {http://eudml.org/doc/211980},
volume = {142},
year = {1993},
}
TY - JOUR
AU - Gladdines, Helma
AU - van Mill, Jan
TI - Hyperspaces of Peano continua of euclidean spaces
JO - Fundamenta Mathematicae
PY - 1993
VL - 142
IS - 2
SP - 173
EP - 188
AB - If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space $L(ℝ^n)$ is homeomorphic to $B^∞$, where B denotes the pseudo-boundary of the Hilbert cube Q.
LA - eng
KW - Hilbert cube; Hilbert space; absorbing system; Z-set; $F_{σδ}$; hyperspace; Peano continuum; $ℝ^n$; Vietoris topology; Peano-continua
UR - http://eudml.org/doc/211980
ER -
References
top- [1] J. Baars, H. Gladdines, and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl., to appear. Zbl0794.57005
- [2] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.
- [3] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
- [4] R. Cauty, L'espace des fonctions continues d'un espace métrique dénombrable, Proc. Amer. Math. Soc. 113 (1991), 493-501.
- [5] R. Cauty, L'espace des arcs d'une surface, Trans. Amer. Math. Soc. 332 (1992), 193-209. Zbl0762.54012
- [6] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107. Zbl0575.54009
- [7] D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), 19-38. Zbl0409.54044
- [8] J. J. Dijkstra and J. Mogilski, The topological product structure of systems of Lebesgue spaces, Math. Ann. 290 (1991), 527-543. Zbl0734.46013
- [9] J. J. Dijkstra, J. van Mill, and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of , Pacific J. Math. 152 (1992), 255-273. Zbl0786.54012
- [10] T. Dobrowolski, W. Marciszewski, and J. Mogilski, On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324. Zbl0768.54016
- [11] C. Kuratowski, Evaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques, Fund. Math. 17 (1931), 249-272. Zbl57.0092.05
- [12] S. Mazurkiewicz, Sur l'ensemble des continus péaniens, ibid., 273-274. Zbl0003.10601
- [13] S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York 1978. Zbl0432.54007
- [14] J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North- Holland, Amsterdam 1989. Zbl0663.57001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.