The Bohr compactification, modulo a metrizable subgroup

W. Comfort; F. Trigos-Arrieta; S. Wu

Fundamenta Mathematicae (1993)

  • Volume: 143, Issue: 2, page 119-136
  • ISSN: 0016-2736

Abstract

top
The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable G and N with N closed in bG but not metrizable; (c) an Abelian group may admit two topological group topologies U and T, with U totally bounded, T locally compact,U ⊆ T, with U and T sharing the same compact sets, and such that nevertheless U is not the topology inherited from the Bohr compactification of ⟨ G, T⟩. There are applications to topological groups of the form kG for G a totally bounded Abelian group.

How to cite

top

Comfort, W., Trigos-Arrieta, F., and Wu, S.. "The Bohr compactification, modulo a metrizable subgroup." Fundamenta Mathematicae 143.2 (1993): 119-136. <http://eudml.org/doc/211996>.

@article{Comfort1993,
abstract = {The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if \{aN:a ∈ A\} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = \{1\}; (b) the asserted equivalence can hold for suitable G and N with N closed in bG but not metrizable; (c) an Abelian group may admit two topological group topologies U and T, with U totally bounded, T locally compact,U ⊆ T, with U and T sharing the same compact sets, and such that nevertheless U is not the topology inherited from the Bohr compactification of ⟨ G, T⟩. There are applications to topological groups of the form kG for G a totally bounded Abelian group.},
author = {Comfort, W., Trigos-Arrieta, F., Wu, S.},
journal = {Fundamenta Mathematicae},
keywords = {maximally almost periodic Abelian group; totally bounded group topology; Bohr compactification; locally compact Abelian group},
language = {eng},
number = {2},
pages = {119-136},
title = {The Bohr compactification, modulo a metrizable subgroup},
url = {http://eudml.org/doc/211996},
volume = {143},
year = {1993},
}

TY - JOUR
AU - Comfort, W.
AU - Trigos-Arrieta, F.
AU - Wu, S.
TI - The Bohr compactification, modulo a metrizable subgroup
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 2
SP - 119
EP - 136
AB - The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable G and N with N closed in bG but not metrizable; (c) an Abelian group may admit two topological group topologies U and T, with U totally bounded, T locally compact,U ⊆ T, with U and T sharing the same compact sets, and such that nevertheless U is not the topology inherited from the Bohr compactification of ⟨ G, T⟩. There are applications to topological groups of the form kG for G a totally bounded Abelian group.
LA - eng
KW - maximally almost periodic Abelian group; totally bounded group topology; Bohr compactification; locally compact Abelian group
UR - http://eudml.org/doc/211996
ER -

References

top
  1. [C] W. W. Comfort, Topological groups, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, 1143-1263. 
  2. [CHR] W. W. Comfort, K.-H. Hofmann and D. Remus, Topological groups and semigroups, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, 1992, 57-144. Zbl0798.22001
  3. [CR] W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291. Zbl0138.02905
  4. [CT] W. W. Comfort and F. J. Trigos-Arrieta, Remarks on a Theorem of Glicksberg, in: General Topology and Applications, S. J. Andima, R. Kopperman, P. R. Misra, J. Z. Reichman and A. R. Todd (eds.), Lecture Notes in Pure and Appl. Math. 134, Dekker, New York, 1991, 25-33. 
  5. [DPS] D. N. Dikranjan, I. R. Prodanov and L. N. Stoyanov, Topological Groups, Lecture Notes in Pure and Appl. Math. 130, Dekker, New York, 1989. 
  6. [E] R. Engelking, General Topology, Monografie Mat. 60, PWN - Polish Scientific Publishers, Warszawa, 1977. 
  7. [F] P. Flor, Zur Bohr-Konvergenz von Folgen, Math. Scand. 23 (1968), 169-170. 
  8. [G] I. Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. Zbl0109.02001
  9. [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963. 
  10. [Hu] R. Hughes, Compactness in locally compact groups, Bull. Amer. Math. Soc. 79 (1973), 122-123. Zbl0263.22006
  11. [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
  12. [K] V. Kuz'minov, On a hypothesis of P. S. Alexandrov in the theory of topological groups, Dokl. Akad. Nauk SSSR 125 (1959), 727-729 (in Russian). 
  13. [L] W. F. LaMartin, On the foundations of k-group theory, Dissertationes Math. 146 (1977). Zbl0394.22001
  14. [Mo] W. Moran, On almost periodic compactifications of locally compact groups, J. London Math. Soc. (2) 3 (1971), 507-512. Zbl0229.22008
  15. [Re] G. A. Reid, On sequential convergence in groups, Math. Z. 102 (1967), 227-235. Zbl0153.04302
  16. [RT] D. Remus and F. J. Trigos-Arrieta, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), 1195-1200. Zbl0826.22002
  17. [Ro] K. A. Ross, Commentary on selected papers of S. Kakutani, in: S. Kakutani, Selected Papers, Vol. I, Robert A. Kallman (ed.), Birkhäuser, Boston, 1986. 
  18. [Š] B. È. Šapirovskiĭ, On embedding extremally disconnected spaces in compact Hausdorff spaces. b-points and weight of pointwise normal spaces, Dokl. Akad. Nauk SSSR 223 (1975), 1083-1086 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 1056-1061. 
  19. [Sc] I. J. Schoenberg, Asymptotic distribution of sequences (solution of Problem 5090), Amer. Math. Monthly 71 (1964), 332-334. 
  20. [Sh] D. B. Shakhmatov, A direct proof that every infinite compact group G contains 0 , 1 w ( G ) , in: Papers in General Topology and Applications, Proc. June 1992 Queens College Conference, Ann. New York Acad. Sci., New York, to appear. 
  21. [Sm] Yu. M. Smirnov, On the metrizability of bicompacta decomposable into a union of sets with countable basis, Fund. Math. 43 (1956), 387-393 (in Russian). Zbl0071.38401
  22. [Sto] A. H. Stone, Metrisability of unions, Proc. Amer. Math. Soc. 10 (1959), 361-366. Zbl0090.38705
  23. [Str] K. R. Stromberg, Universally nonmeasurable subgroups of ℝ, Amer. Math. Monthly 99 (1992), 253-255. Zbl0757.28005
  24. [T1] F. J. Trigos-Arrieta, Pseudocompactness on groups, doctoral dissertation, Wesleyan University, 1991. 
  25. [T2] F. J. Trigos-Arrieta, Pseudocompactness on groups, in: General Topology and Applications, Lecture Notes in Pure and Appl. Math. 134, S. Andima et al. (eds.), Dekker, New York, 1991, 369-378. 
  26. [T3] F. J. Trigos-Arrieta, Continuity, boundedness, connectedness and the Lindelöf property for topological groups, J. Pure Appl. Algebra 70 (1991), 199-210 (= Proceedings of the 1989 Curaçao Conference on Locales and Topological Groups). 
  27. [Ve] R. Venkataraman, Compactness in Abelian topological groups, Pacific J. Math. 57 (1975), 591-595. Zbl0308.22009
  28. [Vi] N. Ya. Vilenkin, On the dyadicity of the group space of bicompact commutative groups, Uspekhi Mat. Nauk 13 (6) (84) (1958), 79-80 (in Russian). 
  29. [W] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Publ. Math. Univ. Strasbourg, Hermann, Paris, 1937. Zbl63.0569.04

Citations in EuDML Documents

top
  1. W. Comfort, F. Trigos-Arrieta, Ta-Sun Wu, Correction to the paper “The Bohr compactification, modulo a metrizable subgroup” (Fund. Math. 143 (1993), 119–136)
  2. Jorge Galindo, Salvador Hernández, The concept of boundedness and the Bohr compactification of a MAP Abelian group
  3. S. S. Gabriyelyan, On characterized subgroups of Abelian topological groups X and the group of all X -valued null sequences
  4. William Wistar Comfort, S. U. Raczkowski, F. Javier Trigos-Arrieta, The dual group of a dense subgroup

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.