On characterized subgroups of Abelian topological groups and the group of all -valued null sequences
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 73-99
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGabriyelyan, S. S.. "On characterized subgroups of Abelian topological groups $X$ and the group of all $X$-valued null sequences." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 73-99. <http://eudml.org/doc/260783>.
@article{Gabriyelyan2014,
abstract = {Let $X$ be an Abelian topological group.
A subgroup $H$ of $X$ is characterized
if there is a sequence
$\mathbf \{u\} = \lbrace u_n\rbrace $ in the dual
group of $X$ such that
$H= \lbrace x\in X: \; (u_n,x)\rightarrow 1\rbrace $.
We reduce the study of characterized
subgroups of $X$ to the study of
characterized subgroups of compact
metrizable Abelian groups.
Let $c_0(X)$ be the group of all
$X$-valued null sequences and
$\mathfrak \{u\}_0$ be the uniform
topology on $c_0(X)$. If $X$ is compact
we prove that $c_0(X)$ is a characterized
subgroup of $X^\mathbb \{N\}$ if and only
if $X\cong \mathbb \{T\}^n\times F$, where
$n\ge 0$ and $F$ is a finite Abelian
group. For every compact Abelian group
$X$, the group $c_0(X)$ is a
$\mathfrak \{g\}$-closed subgroup of
$X^\mathbb \{N\}$. Some general properties
of $(c_0(X),\mathfrak \{u\}_0)$ and its
dual group are given. In particular,
we describe compact subsets of
$(c_0(X),\mathfrak \{u\}_0)$.},
author = {Gabriyelyan, S. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {group of null sequences; $T$-sequence; characterized subgroup; $T$-characterized subgroup; $\mathfrak \{g\}$-closed subgroup; group of null sequences; -sequence; characterized subgroup; -characterized subgroup; -closed subgroup},
language = {eng},
number = {1},
pages = {73-99},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On characterized subgroups of Abelian topological groups $X$ and the group of all $X$-valued null sequences},
url = {http://eudml.org/doc/260783},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Gabriyelyan, S. S.
TI - On characterized subgroups of Abelian topological groups $X$ and the group of all $X$-valued null sequences
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 73
EP - 99
AB - Let $X$ be an Abelian topological group.
A subgroup $H$ of $X$ is characterized
if there is a sequence
$\mathbf {u} = \lbrace u_n\rbrace $ in the dual
group of $X$ such that
$H= \lbrace x\in X: \; (u_n,x)\rightarrow 1\rbrace $.
We reduce the study of characterized
subgroups of $X$ to the study of
characterized subgroups of compact
metrizable Abelian groups.
Let $c_0(X)$ be the group of all
$X$-valued null sequences and
$\mathfrak {u}_0$ be the uniform
topology on $c_0(X)$. If $X$ is compact
we prove that $c_0(X)$ is a characterized
subgroup of $X^\mathbb {N}$ if and only
if $X\cong \mathbb {T}^n\times F$, where
$n\ge 0$ and $F$ is a finite Abelian
group. For every compact Abelian group
$X$, the group $c_0(X)$ is a
$\mathfrak {g}$-closed subgroup of
$X^\mathbb {N}$. Some general properties
of $(c_0(X),\mathfrak {u}_0)$ and its
dual group are given. In particular,
we describe compact subsets of
$(c_0(X),\mathfrak {u}_0)$.
LA - eng
KW - group of null sequences; $T$-sequence; characterized subgroup; $T$-characterized subgroup; $\mathfrak {g}$-closed subgroup; group of null sequences; -sequence; characterized subgroup; -characterized subgroup; -closed subgroup
UR - http://eudml.org/doc/260783
ER -
References
top- Arhangel'skii A.V., Open and close-to-open mappings. Relations among spaces, Trudy Moskov. Mat. Obsch. 15 (1966), 181–223. MR0206909
- Arhangel'skii A.V., Tkachenko M.G., Topological Groups and Related Structures, Atlantis Press/World Scientific, Amsterdam-Paris, 2008. MR2433295
- Armacost D., The Structure of Locally Compact Abelian Groups, Monographs and Textbooks in Pure and Applied Mathematics, 68, Marcel Dekker, Inc., New York, 1981. Zbl0509.22003MR0637201
- Aussenhofer L., Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups, Dissertation, Tübingen, 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999), 113p. Zbl0953.22001MR1736984
- Barbieri G., Dikranjan D., Milan C., Weber H., 10.1016/S0166-8641(02)00366-8, Topology Appl. 132 (2003), 89–101. MR1990082DOI10.1016/S0166-8641(02)00366-8
- Barbieri G., Dikranjan D., Milan C., Weber H., Convergent sequences in precompact group topologies, Appl. Gen. Topol. 6 (2005), 149–169. Zbl1092.22001MR2195810
- Barbieri G., Dikranjan D., Milan C., Weber H., 10.1002/mana.200510650, Math. Nachr. 281 (2008), 930–950. Zbl1144.11059MR2431568DOI10.1002/mana.200510650
- Beiglböck M., Steineder C., Winkler R., Sequences and filters of characters characterizing subgroups of compact Abelian groups, Topology Appl. 153 (2006), 1682–1695. Zbl1091.22001MR2227021
- Biró A., 10.1016/j.jnt.2006.03.008, J. Number Theory 121 (2006), 324–354. Zbl1153.11031MR2274908DOI10.1016/j.jnt.2006.03.008
- Biró A., 10.5802/jtnb.603, J. Théor. Nombres Bordeaux 19 (2007), 567–582. Zbl1159.11022MR2388789DOI10.5802/jtnb.603
- Bíró A., Déshouillers J.-M., Sós V.T., Good approximation and characterization of subgroups of , Studia Sci. Math. Hungar. 38 (2001), 97–113. MR1877772
- Biró A., Sós V.T., 10.1016/S0022-314X(02)00068-9, J. Number Theory 99 (2003), 405–414. Zbl1058.11047MR1968461DOI10.1016/S0022-314X(02)00068-9
- Borel J.P., 10.5802/afst.595, Ann. Fac. Sci. Toulouse Math. 5 (1983), 217–235. MR0747191DOI10.5802/afst.595
- Chasco M.J., 10.1007/s000130050160, Arch. Math. 70 (1998), 22–28. Zbl0899.22001MR1487450DOI10.1007/s000130050160
- Chasco M.J., Martín-Peinador E., Tarieladze V., On Mackey topology for groups, Studia Math. 132 (1999), 257–284. Zbl0930.46006MR1669662
- Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J., 10.4995/agt.2006.1936, Appl. Gen. Topol. 7 (2006), 109–124. Zbl1135.22004MR2284939DOI10.4995/agt.2006.1936
- Comfort W.W., Ross K.A., Topologies induced by groups of characters, Fund. Math. 55 (1964), 283–291. MR0169940
- Comfort W., Trigos-Arrieta F.-J., Ta Sun Wu, The Bohr compactification, modulo a metrizable subgroup, Fund. Math. 143 (1993), 119–136. Zbl0872.22001MR1240629
- Dikranjan D., Gabriyelyan S.S., 10.1016/j.topol.2013.07.037, Topology Appl. 160 (2013), 2427–2442. MR3120657DOI10.1016/j.topol.2013.07.037
- Dikranjan D., Kunen K., 10.1016/j.jpaa.2005.12.011, J. Pure Appl. Algebra 208 (2007), 285–291. Zbl1109.22002MR2269843DOI10.1016/j.jpaa.2005.12.011
- Dikranjan D., Martín-Peinador E., Tarieladze V., Group valued null sequences and metrizable non-Mackey groups, Forum Math. DOI: 10.1515/forum-2011-0099, February 2012.
- Dikranjan D., Milan C., Tonolo A., 10.1016/j.jpaa.2004.08.021, J. Pure Appl. Algebra 197 (2005), 23–41. MR2123978DOI10.1016/j.jpaa.2004.08.021
- Dikranjan D., Prodanov I., Stojanov L., Topological groups. Characters, Dualities, and Minimal Group Topologies, Marcel Dekker, Inc., New York-Basel, 1990. MR1015288
- Eggleston H.G., Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. 54 (1952), 42–93. Zbl0045.16603MR0048504
- Engelking R., General Topology, Panstwowe Wydawnictwo Naukowe, Waszawa, 1977. Zbl0684.54001MR0500779
- Gabriyelyan S.S., 10.1016/j.topol.2010.08.018, Topology Appl. 157 (2010), 2786–2802. Zbl1207.54047MR2729338DOI10.1016/j.topol.2010.08.018
- Gabriyelyan S.S., 10.1016/j.topol.2010.09.002, Topology Appl. 157 (2010), 2834–2843. Zbl1221.22009MR2729343DOI10.1016/j.topol.2010.09.002
- Gabriyelyan S.S., 10.4064/fm221-2-1, Fund. Math. 221 (2013), 95–127. MR3062915DOI10.4064/fm221-2-1
- Gabriyelyan S.S., Minimally almost periodic group topologies on infinite countable Abelian groups: A solution to a question by Comfort, preprint, 2010, arXiv.org/abs/1002.1468.
- Gabriyelyan S.S., On -characterized subgroups of compact Abelian groups, preprint, 2012.
- Glicksberg I., 10.4153/CJM-1962-017-3, Canad. J. Math. 14 (1962), 269–276. Zbl0109.02001MR0155923DOI10.4153/CJM-1962-017-3
- Graev M., Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 278–324. MR0025474
- Hart J.E., Kunen K, 10.1016/j.topol.2003.08.036, Topology Appl. 151 (2005), 157–168. Zbl1074.54013MR2139749DOI10.1016/j.topol.2003.08.036
- Hart J.E., Kunen K., 10.1016/j.topol.2005.02.011, Topology Appl. 153 (2006), 991–1002. Zbl1093.54010MR2203013DOI10.1016/j.topol.2005.02.011
- Hewitt E., Ross K.A., Abstract Harmonic Analysis, Vol. I, 2nd ed., Springer, Berlin, 1979. Zbl0837.43002MR0551496
- Kaplan S., 10.1215/S0012-7094-48-01557-9, Duke Math. J. 15 (1948), 649–658. MR0026999DOI10.1215/S0012-7094-48-01557-9
- Kraaikamp C., Liardet P., 10.1090/S0002-9939-1991-1062392-7, Proc. Amer. Math. Soc. 112 (1991), 303–309. Zbl0725.11033MR1062392DOI10.1090/S0002-9939-1991-1062392-7
- Larcher G., 10.1090/S0002-9939-1988-0947645-2, Proc. Amer. Math. Soc. 103 (1988), 718–722. Zbl0659.10009MR0947645DOI10.1090/S0002-9939-1988-0947645-2
- Nienhuys J., Construction of group topologies on Abelian groups, Fund. Math. 75 (1972), 101–116. Zbl0213.03503MR0302810
- Petersen K., Shapiro L., 10.1090/S0002-9947-1973-0322839-1, Trans. Amer. Math. Soc. 177 (1973), 375–390. Zbl0229.54036MR0322839DOI10.1090/S0002-9947-1973-0322839-1
- Protasov I.V., Zelenyuk E.G., 10.1070/IM1991v037n02ABEH002071, Math. USSR Izv. 37 (1991), 445–460; Russian original: Izv. Akad. Nauk SSSR 54 (1990), 1090–1107. Zbl0997.22002MR1086087DOI10.1070/IM1991v037n02ABEH002071
- Raczkowski S.U., 10.1016/S0166-8641(01)00110-9, Topology Appl. 121 (2002), 63–74. Zbl1007.22003MR1903683DOI10.1016/S0166-8641(01)00110-9
- Rolewicz S., Some remarks on monothetic groups, Colloq. Math. 13 (1964), 28–29. Zbl0131.26901MR0171876
- Siwiec F., 10.1016/0016-660X(71)90120-6, General Topology Appl. 1 (1971), 143–154. MR0288737DOI10.1016/0016-660X(71)90120-6
- Winkler R., 10.1007/s006050200027, Monatsh. Math. 135 (2002), 333–343. Zbl1008.37005MR1914810DOI10.1007/s006050200027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.