Almost split sequences for non-regular modules
Fundamenta Mathematicae (1993)
- Volume: 143, Issue: 2, page 183-190
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Auslander and I. Reiten, Representation theory of artin algebras III: Almost split sequences, Comm. Algebra 3 (1975), 239-294. Zbl0331.16027
- [2] M. Auslander and I. Reiten, Representation theory of artin algebras IV: Invariants given by almost split sequences, ibid. 5 (1977), 443-518. Zbl0396.16007
- [3] R. Bautista and S. Brenner, On the number of terms in the middle of an almost split sequence, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 1-8. Zbl0483.16030
- [4] R. Bautista and S. O. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767. Zbl0515.16013
- [5] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Lecture Notes in Math. 832, Springer, Berlin, 1980, 280-294. Zbl0446.16032
- [6] M. Harada and Y. Sai, On categories of indecomposable modules, Osaka J. Math. 7 (1970), 323-344. Zbl0248.18018
- [7] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992), 32-54. Zbl0703.16010
- [8] S. Liu, Semi-stable components of an Auslander-Reiten quiver, ibid. 47 (1993), 405-416. Zbl0818.16015
- [9] S. Liu, On short cycles in a module category, preprint. Zbl0824.16015
- [10] I. Reiten, The use of almost split sequences in the representation theory of artin algebras, in: Lecture Notes in Math. 944, Springer, Berlin, 1982, 29-104.
- [11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
- [12] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. Zbl0736.16007