On the number of terms in the middle of almost split sequences over cycle-finite artin algebras
Piotr Malicki; José Peña; Andrzej Skowroński
Open Mathematics (2014)
- Volume: 12, Issue: 1, page 39-45
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPiotr Malicki, José Peña, and Andrzej Skowroński. "On the number of terms in the middle of almost split sequences over cycle-finite artin algebras." Open Mathematics 12.1 (2014): 39-45. <http://eudml.org/doc/269744>.
@article{PiotrMalicki2014,
abstract = {We prove that the number of terms in the middle of an almost split sequence in the module category of a cycle-finite artin algebra is bounded by 5.},
author = {Piotr Malicki, José Peña, Andrzej Skowroński},
journal = {Open Mathematics},
keywords = {Auslander-Reiten quiver; Almost split sequence; Cycle-finite algebra; Auslander-Reiten quivers; almost split sequences; cycle-finite algebras; Artin algebras},
language = {eng},
number = {1},
pages = {39-45},
title = {On the number of terms in the middle of almost split sequences over cycle-finite artin algebras},
url = {http://eudml.org/doc/269744},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Piotr Malicki
AU - José Peña
AU - Andrzej Skowroński
TI - On the number of terms in the middle of almost split sequences over cycle-finite artin algebras
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 39
EP - 45
AB - We prove that the number of terms in the middle of an almost split sequence in the module category of a cycle-finite artin algebra is bounded by 5.
LA - eng
KW - Auslander-Reiten quiver; Almost split sequence; Cycle-finite algebra; Auslander-Reiten quivers; almost split sequences; cycle-finite algebras; Artin algebras
UR - http://eudml.org/doc/269744
ER -
References
top- [1] Assem I., Simson D., Skowroński A., Elements of the Representation Theory of Associative Algebras, 1, London Math. Soc. Stud. Texts, 65, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511614309 Zbl1092.16001
- [2] Assem I., Skowroński A., Algebras with cycle-finite derived categories, Math. Ann., 1988, 280(3), 441–463 http://dx.doi.org/10.1007/BF01456336 Zbl0617.16017
- [3] Assem I., Skowroński A., Minimal representation-infinite coil algebras, Manuscripta Math., 1990, 67(3), 305–331 http://dx.doi.org/10.1007/BF02568435 Zbl0696.16023
- [4] Auslander M., Representation theory of artin algebras II, Comm. Algebra, 1974, 1(4), 269–310 http://dx.doi.org/10.1080/00927877409412807 Zbl0285.16029
- [5] Auslander M., Reiten I., Representation theory of artin algebras III. Almost split sequences, Comm. Algebra, 1975, 3(3), 239–294 http://dx.doi.org/10.1080/00927877508822046 Zbl0331.16027
- [6] Auslander M., Reiten I., Uniserial functors, In: Representation Theory, 2, Ottawa, August 13–25, 1979, Lecture Notes in Math., 832, Springer, Berlin, 1980, 1–47
- [7] Auslander M., Reiten I., Smalø S.O., Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., 36, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO9780511623608 Zbl0834.16001
- [8] Bautista R., Brenner S., On the number of terms in the middle of an almost split sequence, In: Representations of Algebras, Puebla, August 4–8, 1980, Lecture Notes in Math., 903, Springer, Berlin, 1981, 1–8 Zbl0483.16030
- [9] Brenner S., Butler M.C.R., Generalizations of the Bernstein-Gel’fand-Ponomarev reflection functors, In: Representation Theory, II, Ottawa, August 13–25, 1979, Lecture Notes in Math., 832, Springer, Berlin, 1980, 103–169
- [10] Brenner S., Butler M.C.R., Wild subquivers of the Auslander-Reiten quiver of a tame algebra, In: Trends in the Representation Theory of Finite-Dimensional Algebras, Seattle, July 20–24, 1997, Contemp. Math., 229, American Mathematical Society, Providence, 1998, 29–48 http://dx.doi.org/10.1090/conm/229/03309
- [11] Butler M.C.R., Ringel C.M., Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, 1987, 15(1–2), 145–179 http://dx.doi.org/10.1080/00927878708823416 Zbl0612.16013
- [12] Coelho F.U., Marcos E.N., Merklen H.A., Skowroński A., Module categories with infinite radical square zero are of finite type, Comm. Algebra, 1994, 22(11), 4511–4517 http://dx.doi.org/10.1080/00927879408825084 Zbl0812.16019
- [13] Crawley-Boevey W., Tame algebras and generic modules, Proc. London Math. Soc., 1991, 63(2), 241–265 http://dx.doi.org/10.1112/plms/s3-63.2.241 Zbl0741.16005
- [14] Crawley-Boevey W., Modules of finite length over their endomorphism rings, In: Representations of Algebras and Related Topics, Tsukuba, 1990, London Math. Soc. Lecture Note Series, 168, Cambridge University Press, Cambridge, 1992, 127–184 http://dx.doi.org/10.1017/CBO9780511661853.005 Zbl0805.16028
- [15] Dlab V., Ringel C.M., Indecomposable Representations of Graphs and Algebras, Mem. Amer. Math. Soc., 173, American Mathematical Society, Providence, 1976 Zbl0332.16015
- [16] Dlab V., Ringel C.M., The representations of tame hereditary algebras, In: Representation Theory of Algebras, Philadelphia, May 24–28, 1976, Lecture Notes in Pure Appl. Math., 37, Marcel Dekker, New York, 1978, 329–353
- [17] Dowbor P., Skowroński A., Galois coverings of representation-infinite algebras, Comment. Math. Helv., 1987, 62(2), 311–337 http://dx.doi.org/10.1007/BF02564450 Zbl0628.16019
- [18] Happel D., Ringel C.M., Tilted algebras, Trans. Amer. Math. Soc., 1982, 274(2), 399–443 http://dx.doi.org/10.1090/S0002-9947-1982-0675063-2 Zbl0503.16024
- [19] Jaworska A., Malicki P., Skowroński A., Tilted algebras and short chains of modules, Math. Z., 2013, 273(1–2), 19–27 http://dx.doi.org/10.1007/s00209-012-0993-0 Zbl1331.16008
- [20] Kerner O., Tilting wild algebras, J. London Math. Soc., 1989, 39(1), 29–47 http://dx.doi.org/10.1112/jlms/s2-39.1.29 Zbl0675.16013
- [21] Kerner O., Stable components of wild tilted algebras, J. Algebra, 1992, 142(1), 37–57 http://dx.doi.org/10.1016/0021-8693(91)90215-T
- [22] Kerner O., Skowroński A., On module categories with nilpotent infinite radical, Compositio Math., 1991, 77(3), 313–333 Zbl0717.16012
- [23] Lenzing H., Skowroński A., Quasi-tilted algebras of canonical type, Colloq. Math., 1996, 71(2), 161–181 Zbl0870.16007
- [24] Liu S.-P., Almost split sequences for nonregular modules, Fund. Math., 1993, 143(2), 183–190 Zbl0801.16009
- [25] Liu S.-P., Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc., 1993, 47(3), 405–416 http://dx.doi.org/10.1112/jlms/s2-47.3.405 Zbl0818.16015
- [26] Liu S.-P., Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. (Basel), 1993, 61(1), 12–19 http://dx.doi.org/10.1007/BF01258050 Zbl0809.16015
- [27] Malicki P., Skowroński A., Algebras with separating almost cyclic coherent Auslander-Reiten components, J. Algebra, 2005, 291(1), 208–237 http://dx.doi.org/10.1016/j.jalgebra.2005.03.021 Zbl1121.16017
- [28] de la Peña J.A., Skowroński A., Algebras with cycle-finite Galois coverings, Trans. Amer. Math. Soc., 2011, 363(8), 4309–4336 http://dx.doi.org/10.1090/S0002-9947-2011-05256-6 Zbl1253.16018
- [29] de la Peña J.A., Takane M., On the number of terms in the middle of almost split sequences over tame algebras, Trans. Amer. Math. Soc., 1999, 351(9), 3857–3868 http://dx.doi.org/10.1090/S0002-9947-99-02137-6 Zbl0944.16019
- [30] de la Peña J.A., Tomé B., Iterated tubular algebras, J. Pure Appl. Algebra, 1990, 64(3), 303–314 http://dx.doi.org/10.1016/0022-4049(90)90064-O Zbl0704.16006
- [31] Peng L.G., Xiao J., On the number of DTr-orbits containing directing modules, Proc. Amer. Math. Soc., 1993, 118(3), 753–756 http://dx.doi.org/10.1090/S0002-9939-1993-1135078-X Zbl0787.16014
- [32] Pogorzały Z., Skowroński A., On algebras whose indecomposable modules are multiplicity-free, Proc. London Math. Soc., 1983, 47(3), 463–479 http://dx.doi.org/10.1112/plms/s3-47.3.463 Zbl0559.16016
- [33] Reiten I., Skowroński A., Characterizations of algebras with small homological dimensions, Adv. Math., 2003, 179(1), 122–154 http://dx.doi.org/10.1016/S0001-8708(02)00029-4 Zbl1051.16011
- [34] Reiten I., Skowroński A., Generalized double tilted algebras, J. Math. Soc. Japan, 2004, 56(1), 269–288 http://dx.doi.org/10.2969/jmsj/1191418706 Zbl1071.16011
- [35] Reiten I., Skowroński A., Smalø S.O., Short chains and regular components, Proc. Amer. Math. Soc., 1993, 117(3), 601–612 http://dx.doi.org/10.1090/S0002-9939-1993-1124149-X Zbl0782.16008
- [36] Ringel C.M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer, Berlin, 1984
- [37] Skowroński A., Selfinjective algebras of polynomial growth, Math. Ann., 1989, 285(2), 177–199 http://dx.doi.org/10.1007/BF01443513 Zbl0653.16021
- [38] Skowroński A., Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math., 1993, 30(3), 515–527 Zbl0818.16017
- [39] Skowroński A., Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc., 1994, 120(1), 19–26 Zbl0831.16014
- [40] Skowroński A., Cycles in module categories, In: Finite-Dimensional Algebras and Related Topics, Ottawa, August 10–18, 1992, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer, Dordrecht, 1994, 309–345 Zbl0819.16013
- [41] Skowroński A., Cycle-finite algebras, J. Pure Appl. Algebra, 1995, 103(1), 105–116 http://dx.doi.org/10.1016/0022-4049(94)00094-Y
- [42] Skowroński A., Simply connected algebras of polynomial growth, Compositio Math., 1997, 109(1), 99–133 http://dx.doi.org/10.1023/A:1000245728528 Zbl0889.16004
- [43] Skowroński A., Tame algebras with strongly simply connected Galois coverings, Colloq. Math., 1997, 72(2), 335–351 Zbl0876.16007
- [44] Skowroński A., Tame quasi-tilted algebras, J. Algebra, 1998, 203(2), 470–490 http://dx.doi.org/10.1006/jabr.1997.7328
- [45] Skowroński A., Selfinjective algebras: finite and tame type, In: Trends in Representation Theory of Algebras and Related Topics, Querétaro, August 11–14, 2004, Contemp. Math., 406, American Mathematical Society, Providence, 2006, 169–238 Zbl1129.16013
- [46] Skowroński A., Waschbüsch J., Representation-finite biserial algebras, J. Reine Angew. Math., 1983, 345, 172–181 Zbl0511.16021
- [47] Wald B., Waschbüsch J., Tame biserial algebras, J. Algebra, 1985, 95(2), 480–500 http://dx.doi.org/10.1016/0021-8693(85)90119-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.