Minimal bi-Lipschitz embedding dimension of ultrametric spaces

Jouni Luukkainen; Hossein Movahedi-Lankarani

Fundamenta Mathematicae (1994)

  • Volume: 144, Issue: 2, page 181-193
  • ISSN: 0016-2736

Abstract

top
We prove that an ultrametric space can be bi-Lipschitz embedded in n if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

How to cite

top

Luukkainen, Jouni, and Movahedi-Lankarani, Hossein. "Minimal bi-Lipschitz embedding dimension of ultrametric spaces." Fundamenta Mathematicae 144.2 (1994): 181-193. <http://eudml.org/doc/212022>.

@article{Luukkainen1994,
abstract = {We prove that an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$ if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.},
author = {Luukkainen, Jouni, Movahedi-Lankarani, Hossein},
journal = {Fundamenta Mathematicae},
keywords = {bi-Lipschitz; ultrametric; metric dimension; inverse limit},
language = {eng},
number = {2},
pages = {181-193},
title = {Minimal bi-Lipschitz embedding dimension of ultrametric spaces},
url = {http://eudml.org/doc/212022},
volume = {144},
year = {1994},
}

TY - JOUR
AU - Luukkainen, Jouni
AU - Movahedi-Lankarani, Hossein
TI - Minimal bi-Lipschitz embedding dimension of ultrametric spaces
JO - Fundamenta Mathematicae
PY - 1994
VL - 144
IS - 2
SP - 181
EP - 193
AB - We prove that an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$ if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
LA - eng
KW - bi-Lipschitz; ultrametric; metric dimension; inverse limit
UR - http://eudml.org/doc/212022
ER -

References

top
  1. [1] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577. Zbl0639.51018
  2. [2] P. Assouad, Espaces métriques, plongements, facteurs, Thèse de doctorat d'État, Orsay, 1977. Zbl0396.46035
  3. [3] P. Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans n , C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. Zbl0409.54020
  4. [4] P. Assouad, Plongements Lipschitziens dans n , Bull. Soc. Math. France 111 (1983), 429-448. Zbl0597.54015
  5. [5] A. Ben-Artzi, A. Eden, C. Foias and B. Nicolaenko, Hölder continuity for the inverse of Ma né's projection, J. Math. Anal. Appl. 178 (1993), 22-29. Zbl0815.46016
  6. [6] R. Engelking, Dimension Theory, PWN, Warszawa, and North-Holland, Amsterdam, 1978. 
  7. [7] K. Falconer, Fractal Geometry, Wiley, Chichester, 1990. 
  8. [8] J. B. Kelly, Metric inequalities and symmetric differences, in: Inequalities-II, O. Shisha (ed.), Academic Press, New York, 1970, 193-212. 
  9. [9] J. B. Kelly, Hypermetric spaces and metric transforms, in: Inequalities-III, O. Shisha (ed.), Academic Press, New York, 1972, 149-158. Zbl0294.52011
  10. [10] A. Yu. Lemin, On the stability of the property of a space being isosceles, Uspekhi Mat. Nauk 39 (5) (1984), 249-250 (in Russian); English transl.: Russian Math. Surveys 39 (5) (1984), 283-284. 
  11. [11] A. Yu. Lemin, Isometric imbedding of isosceles (non-Archimedean) spaces in Euclidean spaces, Dokl. Akad. Nauk SSSR 285 (1985), 558-562 (in Russian); English transl.: Soviet Math. Dokl. 32 (1985), 740-744. Zbl0602.54031
  12. [12] J. Luukkainen and P. Tukia, Quasisymmetric and Lipschitz approximation of embeddings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 343-367. Zbl0456.57005
  13. [13] J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, ibid. 3 (1977), 85-122. Zbl0397.57011
  14. [14] G. Michon, Les cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 673-675. Zbl0582.54019
  15. [15] H. Movahedi-Lankarani, On the inverse of Ma né's projection, Proc. Amer. Math. Soc. 116 (1992), 555-560. Zbl0777.54011
  16. [16] H. Movahedi-Lankarani, An invariant of bi-Lipschitz maps, Fund. Math. 143 (1993), 1-9. Zbl0845.54018
  17. [17] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978. 
  18. [18] W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge, 1984. Zbl0553.26006
  19. [19] A. F. Timan, On the isometric mapping of some ultrametric spaces into L p -spaces, Trudy Mat. Inst. Steklov. 134 (1975), 314-326 (in Russian); English transl.: Proc. Steklov Inst. Math. 134 (1975), 357-370. Zbl0329.46031
  20. [20] A. F. Timan and I. A. Vestfrid, Any separable ultrametric space can be isometrically imbedded in l 2 , Funktsional. Anal. i Prilozhen. 17 (1) (1983), 85-86 (in Russian); English transl.: Functional Anal. Appl. 17 (1983), 70-71. Zbl0522.46017
  21. [21] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975. Zbl0324.46034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.