Ultrametric spaces bi-Lipschitz embeddable in
Fundamenta Mathematicae (1996)
- Volume: 150, Issue: 1, page 25-42
 - ISSN: 0016-2736
 
Access Full Article
topAbstract
topHow to cite
topLuosto, Kerkko. "Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$." Fundamenta Mathematicae 150.1 (1996): 25-42. <http://eudml.org/doc/212161>.
@article{Luosto1996,
	abstract = {It is proved that if an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$, then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in $ℝ^n$.},
	author = {Luosto, Kerkko},
	journal = {Fundamenta Mathematicae},
	keywords = {Assouad dimension},
	language = {eng},
	number = {1},
	pages = {25-42},
	title = {Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$},
	url = {http://eudml.org/doc/212161},
	volume = {150},
	year = {1996},
}
TY  - JOUR
AU  - Luosto, Kerkko
TI  - Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$
JO  - Fundamenta Mathematicae
PY  - 1996
VL  - 150
IS  - 1
SP  - 25
EP  - 42
AB  - It is proved that if an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$, then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in $ℝ^n$.
LA  - eng
KW  - Assouad dimension
UR  - http://eudml.org/doc/212161
ER  - 
References
top- [ABBW] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577. Zbl0639.51018
 - [A] P. Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans , C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. Zbl0409.54020
 - [LM-L] J. Luukkainen and H. Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 181-193. Zbl0807.54025
 - [M-LW] H. Movahedi-Lankarani and R. Wells, Ultrametrics and geometric measures, Proc. Amer. Math. Soc. 123 (1995), 2579-2584. Zbl0872.54020
 - [S] S. Semmes, On the nonexistence of bilipschitz parameterizations and geometric problems about weights, Rev. Mat. Iberoamericana, to appear. Zbl0858.46017
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.