Ultrametric spaces bi-Lipschitz embeddable in n

Kerkko Luosto

Fundamenta Mathematicae (1996)

  • Volume: 150, Issue: 1, page 25-42
  • ISSN: 0016-2736

Abstract

top
It is proved that if an ultrametric space can be bi-Lipschitz embedded in n , then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in n .

How to cite

top

Luosto, Kerkko. "Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$." Fundamenta Mathematicae 150.1 (1996): 25-42. <http://eudml.org/doc/212161>.

@article{Luosto1996,
abstract = {It is proved that if an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$, then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in $ℝ^n$.},
author = {Luosto, Kerkko},
journal = {Fundamenta Mathematicae},
keywords = {Assouad dimension},
language = {eng},
number = {1},
pages = {25-42},
title = {Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$},
url = {http://eudml.org/doc/212161},
volume = {150},
year = {1996},
}

TY - JOUR
AU - Luosto, Kerkko
TI - Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$
JO - Fundamenta Mathematicae
PY - 1996
VL - 150
IS - 1
SP - 25
EP - 42
AB - It is proved that if an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$, then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in $ℝ^n$.
LA - eng
KW - Assouad dimension
UR - http://eudml.org/doc/212161
ER -

References

top
  1. [ABBW] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577. Zbl0639.51018
  2. [A] P. Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans n , C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. Zbl0409.54020
  3. [LM-L] J. Luukkainen and H. Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 181-193. Zbl0807.54025
  4. [M-LW] H. Movahedi-Lankarani and R. Wells, Ultrametrics and geometric measures, Proc. Amer. Math. Soc. 123 (1995), 2579-2584. Zbl0872.54020
  5. [S] S. Semmes, On the nonexistence of bilipschitz parameterizations and geometric problems about A weights, Rev. Mat. Iberoamericana, to appear. Zbl0858.46017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.