Ultrametric spaces bi-Lipschitz embeddable in
Fundamenta Mathematicae (1996)
- Volume: 150, Issue: 1, page 25-42
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [ABBW] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577. Zbl0639.51018
- [A] P. Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans , C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. Zbl0409.54020
- [LM-L] J. Luukkainen and H. Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 181-193. Zbl0807.54025
- [M-LW] H. Movahedi-Lankarani and R. Wells, Ultrametrics and geometric measures, Proc. Amer. Math. Soc. 123 (1995), 2579-2584. Zbl0872.54020
- [S] S. Semmes, On the nonexistence of bilipschitz parameterizations and geometric problems about weights, Rev. Mat. Iberoamericana, to appear. Zbl0858.46017