Sur un exemple de Banach et Kuratowski

Robert Cauty

Fundamenta Mathematicae (1994)

  • Volume: 144, Issue: 3, page 195-207
  • ISSN: 0016-2736

Abstract

top
For A ⊂ I = [0,1], let L A be the set of continuous real-valued functions on I which vanish on a neighborhood of A. We prove that if A is an analytic subset which is not an F σ and whose closure has an empty interior, then L A is homeomorphic to the space of differentiable functions from I into ℝ.

How to cite

top

Cauty, Robert. "Sur un exemple de Banach et Kuratowski." Fundamenta Mathematicae 144.3 (1994): 195-207. <http://eudml.org/doc/212024>.

@article{Cauty1994,
author = {Cauty, Robert},
journal = {Fundamenta Mathematicae},
keywords = {analytic set; coanalytic set; non-Borelian; function space; hyperspace},
language = {fre},
number = {3},
pages = {195-207},
title = {Sur un exemple de Banach et Kuratowski},
url = {http://eudml.org/doc/212024},
volume = {144},
year = {1994},
}

TY - JOUR
AU - Cauty, Robert
TI - Sur un exemple de Banach et Kuratowski
JO - Fundamenta Mathematicae
PY - 1994
VL - 144
IS - 3
SP - 195
EP - 207
LA - fre
KW - analytic set; coanalytic set; non-Borelian; function space; hyperspace
UR - http://eudml.org/doc/212024
ER -

References

top
  1. [1] S. Banach et C. Kuratowski, Sur la structure des ensembles linéaires, Studia Math. 4 (1933), 95-99. 
  2. [2] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  3. [3] R. Cauty, Caractérisation topologique de l'espace des fonctions dérivables, Fund. Math. 138 (1991), 35-58. Zbl0770.54015
  4. [4] R. Cauty, T. Dobrowolski and W. Marciszewski, A contribution to the topological classification of the spaces C p ( X ) , ibid. 142 (1993), 269-301. Zbl0813.54009
  5. [5] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to 0 -dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. Zbl0587.54015
  6. [6] D. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), 19-38. Zbl0409.54044
  7. [7] W. Hurewicz, Relative perfekte Teile von Punktmengen und Mengen ( A), ibid. 12 (1928), 78-109. Zbl54.0097.06
  8. [8] C. Kuratowski, Topologie I, 4ème édition, PWN, Warszawa, 1958. 
  9. [9] C. A. Rogers et al., Analytic Sets, Academic Press, London, 1980. 
  10. [10] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l 2 -manifolds, Fund. Math. 101 (1978), 93-110. Zbl0406.55003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.