A contribution to the topological classification of the spaces Ср(X)
Robert Cauty; Tadeusz Dobrowolski; Witold Marciszewski
Fundamenta Mathematicae (1993)
- Volume: 142, Issue: 3, page 269-301
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topCauty, Robert, Dobrowolski, Tadeusz, and Marciszewski, Witold. "A contribution to the topological classification of the spaces Ср(X)." Fundamenta Mathematicae 142.3 (1993): 269-301. <http://eudml.org/doc/211987>.
@article{Cauty1993,
abstract = {We prove that for each countably infinite, regular space X such that $C_p(X)$ is a $Z_σ$-space, the topology of $C_p(X)$ is determined by the class $F_0(C_p(X))$ of spaces embeddable onto closed subsets of $C_p(X)$. We show that $C_p(X)$, whenever Borel, is of an exact multiplicative class; it is homeomorphic to the absorbing set $Ω_α$ for the multiplicative Borel class $M_α$ if $F_0(C_p(X)) = M_α$. For each ordinal α ≥ 2, we provide an example $X_α$ such that $C_p(X_α)$ is homeomorphic to $Ω_α$.},
author = {Cauty, Robert, Dobrowolski, Tadeusz, Marciszewski, Witold},
journal = {Fundamenta Mathematicae},
keywords = {function space; pointwise convergence topology; absorbing sets; Borel and projective filters; Borel filters; projective filters; strong -universality; topology of pointwise convergence; absorbing set method},
language = {eng},
number = {3},
pages = {269-301},
title = {A contribution to the topological classification of the spaces Ср(X)},
url = {http://eudml.org/doc/211987},
volume = {142},
year = {1993},
}
TY - JOUR
AU - Cauty, Robert
AU - Dobrowolski, Tadeusz
AU - Marciszewski, Witold
TI - A contribution to the topological classification of the spaces Ср(X)
JO - Fundamenta Mathematicae
PY - 1993
VL - 142
IS - 3
SP - 269
EP - 301
AB - We prove that for each countably infinite, regular space X such that $C_p(X)$ is a $Z_σ$-space, the topology of $C_p(X)$ is determined by the class $F_0(C_p(X))$ of spaces embeddable onto closed subsets of $C_p(X)$. We show that $C_p(X)$, whenever Borel, is of an exact multiplicative class; it is homeomorphic to the absorbing set $Ω_α$ for the multiplicative Borel class $M_α$ if $F_0(C_p(X)) = M_α$. For each ordinal α ≥ 2, we provide an example $X_α$ such that $C_p(X_α)$ is homeomorphic to $Ω_α$.
LA - eng
KW - function space; pointwise convergence topology; absorbing sets; Borel and projective filters; Borel filters; projective filters; strong -universality; topology of pointwise convergence; absorbing set method
UR - http://eudml.org/doc/211987
ER -
References
top- [1] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.
- [2] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
- [3] J. Calbrix, Classes de Baire et espaces d'applications continues, C. R. Acad. Sci. Paris 301 (1985), 759-762. Zbl0581.54023
- [4] J. Calbrix, Filtres boréliens sur l'ensemble des entiers et espaces des applications continues, Rev. Roumaine Math. Pures Appl. 33 (1988), 655-661. Zbl0659.54009
- [5] R. Cauty, L'espace des fonctions continues d'un espace métrique dénombrable, Proc. Amer. Math. Soc. 113 (1991), 493-501.
- [6] R. Cauty, Sur deux espaces de fonctions non dérivables, preprint.
- [7] R. Cauty, Un exemple d'ensembles absorbants non équivalents, Fund. Math. 140 (1991), 49-61.
- [8] R. Cauty, Ensembles absorbants pour les classes projectives, ibid., to appear.
- [9] R. Cauty and T. Dobrowolski, Applying coordinate products to the topological identification of normed spaces, Trans. Amer. Math. Soc., to appear. Zbl0820.57015
- [10] M. M. Choban, Baire sets in complete topological spaces, Ukrain. Math. Zh. 22 (1970), 330-342 (in Russian).
- [11] J. J. Dijkstra, T. Grilliot, D. Lutzer and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710. Zbl0525.54010
- [12] J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of , Pacific J. Math. 152 (1992), 255-273. Zbl0786.54012
- [13] T. Dobrowolski, S. P. Gulko and J. Mogilski, Function spaces homeomorphic to the countable product of , Topology Appl. 34 (1990), 153-160. Zbl0691.57009
- [14] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324. Zbl0768.54016
- [15] T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990, 409-429.
- [16] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235. Zbl0472.57009
- [17] R. Engelking, General Topology, PWN, Warszawa 1977.
- [18] J. E. Jayne and C. A. Rogers, K-analytic sets, in: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London 1980. Zbl0524.54028
- [19] K. Kunen and A. W. Miller, Borel and projective sets from the point of view of compact sets, Math. Proc. Cambridge Philos. Soc. 94 (1983), 399-409. Zbl0545.54027
- [20] K. Kuratowski, Topology. I, Academic Press, New York 1966.
- [21] L. A. Louveau and J. Saint Raymond, Borel classes and games: Wadge-type and Hurewicz-type results, Trans. Amer. Math. Soc. 304 (1987), 431-467. Zbl0655.04001
- [22] D. Lutzer, J. van Mill and R. Pol, Descriptive complexity of function spaces, ibid. 291 (1985), 121-128. Zbl0574.54042
- [23] W. Marciszewski, On analytic and coanalytic function spaces , Topology Appl., to appear. Zbl0785.54020
- [24] J. R. Steel, Analytic sets and Borel isomorphism, Fund. Math. 108 (1980), 83-88. Zbl0463.03028
- [25] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of -manifolds, ibid. 101 (1978), 93-110. Zbl0406.55003
- [26] W. W. Wadge, Ph.D. thesis, Berkeley 1984.
Citations in EuDML Documents
top- Taras Banakh, Robert Cauty, Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces
- Alessandro Andretta, Alberto Marcone, Pointwise convergence and the Wadge hierarchy
- Robert Cauty, Sur un exemple de Banach et Kuratowski
- Nhu Nguyen, Katsuro Sakai, Probability measure functors preserving infinite-dimensional spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.