Algebraic ramifications of the common extension problem for group-valued measures
Fundamenta Mathematicae (1994)
- Volume: 146, Issue: 1, page 1-20
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Basile and K. P. S. Bhaskara Rao, Common extensions of group-valued charges, Boll. Un. Mat. Ital. 7 (5-A) (1991), 157-162. Zbl0741.28008
- [2] A. Basile, K. P. S. Bhaskara Rao and R. M. Shortt, Bounded common extensions of bounded charges, Proc. Amer. Math. Soc. 121 (1994), 137-143. Zbl0807.28002
- [3] K. P. S. Bhaskara Rao and R. M. Shortt, Common extensions for homomorphisms and group-valued charges, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 125-140. Zbl0777.28005
- [4] K. P. S. Bhaskara Rao and R. M. Shortt, Group-valued charges: common extensions and the finite Chinese remainder property, Proc. Amer. Math. Soc. 113 (1991), 965-972. Zbl0743.28004
- [5] T. Carlson and K. Prikry, Ranges of signed measures, Period. Math. Hungar. 13 (1982), 151-155. Zbl0523.28003
- [6] S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235. Zbl0138.01801
- [7] L. Fuchs, Infinite Abelian Groups, Vols. I and II, Academic Press, New York, 1970 & 1973.
- [8] R. Göbel and R. Prelle, Solution of two problems on cotorsion abelian groups, Arch. Math. (Basel) 31 (1978), 423-431. Zbl0387.20040
- [9] Z. Lipecki, On common extensions of two quasi-measures, Czechoslovak Math. J. 36 (1986), 489-494. Zbl0622.28007
- [10] E. Marczewski, Measures in almost independent fields, Fund. Math. 38 (1951), 217-229. Zbl0045.02303
- [11] K. M. Rangaswamy and J. D. Reid, Common extensions of finitely additive measures and a characterization of cotorsion Abelian groups, in: Proc. Curacao, Abelian Groups, Marcel Dekker, New York, 1993, 231-238. Zbl0817.20056
- [12] L. Salce, Cotorsion theories for abelian groups, Symposia Math. 23 (1979), 11-32.