Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels

Svatopluk Fučík; Milan Kučera; Jindřich Nečas; Jiří Souček; Vladimír Souček

Časopis pro pěstování matematiky (1974)

  • Volume: 099, Issue: 3, page 217-243
  • ISSN: 0528-2195

How to cite

top

Fučík, Svatopluk, et al. "Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels." Časopis pro pěstování matematiky 099.3 (1974): 217-243. <http://eudml.org/doc/21207>.

@article{Fučík1974,
author = {Fučík, Svatopluk, Kučera, Milan, Nečas, Jindřich, Souček, Jiří, Souček, Vladimír},
journal = {Časopis pro pěstování matematiky},
language = {eng},
number = {3},
pages = {217-243},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels},
url = {http://eudml.org/doc/21207},
volume = {099},
year = {1974},
}

TY - JOUR
AU - Fučík, Svatopluk
AU - Kučera, Milan
AU - Nečas, Jindřich
AU - Souček, Jiří
AU - Souček, Vladimír
TI - Morse-Sard theorem in infinite dimensional Banach spaces and investigation of the set of all critical levels
JO - Časopis pro pěstování matematiky
PY - 1974
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 099
IS - 3
SP - 217
EP - 243
LA - eng
UR - http://eudml.org/doc/21207
ER -

References

top
  1. S. Fučík, J. Nečas, Ljuѕtегnik-Ѕсhnirеlmаnn thеoгеm аnd nonlinеаг еigеnvаluе problеmѕ, Mаth. Nасhr. 53, 1972, Hеft 1-6, 277-289. (1972) 
  2. S. Fučîk, J. Nečas, J. Souček, V. Souček, Uppеr bound for thе numbеr of еigеnvаluеѕ foг nonlinеаr opеrаtorѕ, Ann. Ѕсuolа Norm. Ѕup. Piѕа 27, 1973, 53 - 71. (1973) MR0372918
  3. S. Fučík, J. Nečas, J. Souček, V. Souček, Uppег bound for thе numbег of сritiсаl lеvеlѕ foг nonlinеаr opеrаtorѕ in BаnасҺ ѕpасеѕ of thе typе of ѕесond ordеr nonlinеаг еlliptiс pаrtiаl diffеrеntiаl opеrаtorѕ, Јournal Funсt. Anаlyѕiѕ 11, 1972, 314-333. (1972) MR0341224
  4. S. Fučík, J. Nečas, J. Souček, V. Souček, Nеw infinitе dimеnѕionаl vеrѕionѕ of thе Morѕе-Ѕагd thеorеm, Boll. U. Mаt. Itаl. 6, 1972, 317-322. (1972) 
  5. R. C. Gunning, R. Rossi, Anаlytiс funсtionѕ of ѕеvеrаl сomplеx vагiаblеѕ, Prеntiсе Hаll, 1965. (1965) 
  6. T. H. Hildebrandt, L. M. Graves, Impliсit funсtion аnd thеir difîеrеntiаlѕ in gеnеrаl аnаlyѕiѕ, Tгаnѕ. Amеr. Mаth. Ѕoс. 29, 1927, 127-153. (1927) MR1501380
  7. [7Ј A. Kratochvíl, J. Nečas, O дискpетнoсти спектpа нелинейнoгo ypавнения Штypма-Лиyвилля четвеpтoгo пopядка, Commеnt. Mаth. Univ. Cаrolinае 12, 4, 1971, 639-653. (1971) 
  8. M. Kučera, Hаuѕdoгff mеаѕuгеѕ of thе ѕеt of сritiсаl vаluеѕ of funсtionѕ fгom thе сlаѕѕ C k , λ , Сommеnt. Mаth. Univ. Саrolinае 13, 2, 1972, 333-350. (1972) 
  9. I. Kupka, Сountеrеxаmplе to thе Morѕе-Ѕагd thеorеm in thе саѕе of infìnitе-dimеnѕionаl mаnifoldѕ, Proс. Amег. Mаth. Ѕoс. Iб, 1965, 954-957. (1965) MR0182024
  10. L. A. Ljusternik, L. G. Schnirelmann, Пpименение тoпoлoгии к экстpемальным задачам, Tpyды 2. всесoюз. съезда, 1, 1935, 224-237. (1935) 
  11. L. A. Ljusternik, L. G. Schnirelmann, Топологические методы в вариационных задачах и их приложения к дифференциальной геометрии поверхности, Успехи Мат. наук II, 1947, 166-217. (1947) 
  12. J. Nečas, О дискретности спектра нелинейного уравнения Штурм-Лиувилля, ДАН СССР 201, 1971, 1045-1048. English translation: Soviet Math. Dokl. 12, 1971, 1779-1783. (1971) 
  13. S. L Pochožajev, О множестве критических значений функционалов, Мат. сборник 75, 1968, 106-111. (1968) 
  14. J. Souček- V. Souček, The Morse-Sard theorem for real-analytic functions, Comment. Math. Univ. Carolinae 13, 1972, 45-51. (1972) Zbl0235.26012MR0308345

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.