The structure of -limit sets for continuous maps of the interval
Andrew M. Bruckner; Jaroslav Smítal
Mathematica Bohemica (1992)
- Volume: 117, Issue: 1, page 42-47
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBruckner, Andrew M., and Smítal, Jaroslav. "The structure of $\omega $-limit sets for continuous maps of the interval." Mathematica Bohemica 117.1 (1992): 42-47. <http://eudml.org/doc/29394>.
@article{Bruckner1992,
abstract = {We prove that every infinite nowhere dense compact subset of the interval $I$ is an $\omega $-limit set of homoclinic type for a continuous function from $I$ to $I$.},
author = {Bruckner, Andrew M., Smítal, Jaroslav},
journal = {Mathematica Bohemica},
keywords = {discrete dynamical system; continuous map; $\omega $-limit set; homoclinic set; discrete dynamical system; continuous map; -limit set; homoclinic set},
language = {eng},
number = {1},
pages = {42-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The structure of $\omega $-limit sets for continuous maps of the interval},
url = {http://eudml.org/doc/29394},
volume = {117},
year = {1992},
}
TY - JOUR
AU - Bruckner, Andrew M.
AU - Smítal, Jaroslav
TI - The structure of $\omega $-limit sets for continuous maps of the interval
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 1
SP - 42
EP - 47
AB - We prove that every infinite nowhere dense compact subset of the interval $I$ is an $\omega $-limit set of homoclinic type for a continuous function from $I$ to $I$.
LA - eng
KW - discrete dynamical system; continuous map; $\omega $-limit set; homoclinic set; discrete dynamical system; continuous map; -limit set; homoclinic set
UR - http://eudml.org/doc/29394
ER -
References
top- S. J. Agronsky A. M. Bruckner J. G. Ceder T. L. Pearson, 10.2307/44152033, Real Analysis Exchange 15 (1989-1990), 483-510. (1989) MR1059418DOI10.2307/44152033
- A. N. Šarkovskii, Attracting and attracted sets, Soviet Math. Dokl. 6 (1965), 268-270. (1965)
- A. N. Šarkovskii, The partially ordered system of attracting sets, Soviet Math. Dokl. 7 (1966), 1384-1386. (1966) MR0209413
- A. N. Šarkovskii, Attracting sets containing no cycles, Ukrain. Mat. Ž. 20 (1968), 136-142. (In Russian.) (1968) MR0225314
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.