The structure of ω -limit sets for continuous maps of the interval

Andrew M. Bruckner; Jaroslav Smítal

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 1, page 42-47
  • ISSN: 0862-7959

Abstract

top
We prove that every infinite nowhere dense compact subset of the interval I is an ω -limit set of homoclinic type for a continuous function from I to I .

How to cite

top

Bruckner, Andrew M., and Smítal, Jaroslav. "The structure of $\omega $-limit sets for continuous maps of the interval." Mathematica Bohemica 117.1 (1992): 42-47. <http://eudml.org/doc/29394>.

@article{Bruckner1992,
abstract = {We prove that every infinite nowhere dense compact subset of the interval $I$ is an $\omega $-limit set of homoclinic type for a continuous function from $I$ to $I$.},
author = {Bruckner, Andrew M., Smítal, Jaroslav},
journal = {Mathematica Bohemica},
keywords = {discrete dynamical system; continuous map; $\omega $-limit set; homoclinic set; discrete dynamical system; continuous map; -limit set; homoclinic set},
language = {eng},
number = {1},
pages = {42-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The structure of $\omega $-limit sets for continuous maps of the interval},
url = {http://eudml.org/doc/29394},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Bruckner, Andrew M.
AU - Smítal, Jaroslav
TI - The structure of $\omega $-limit sets for continuous maps of the interval
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 1
SP - 42
EP - 47
AB - We prove that every infinite nowhere dense compact subset of the interval $I$ is an $\omega $-limit set of homoclinic type for a continuous function from $I$ to $I$.
LA - eng
KW - discrete dynamical system; continuous map; $\omega $-limit set; homoclinic set; discrete dynamical system; continuous map; -limit set; homoclinic set
UR - http://eudml.org/doc/29394
ER -

References

top
  1. S. J. Agronsky A. M. Bruckner J. G. Ceder T. L. Pearson, 10.2307/44152033, Real Analysis Exchange 15 (1989-1990), 483-510. (1989) MR1059418DOI10.2307/44152033
  2. A. N. Šarkovskii, Attracting and attracted sets, Soviet Math. Dokl. 6 (1965), 268-270. (1965) 
  3. A. N. Šarkovskii, The partially ordered system of attracting sets, Soviet Math. Dokl. 7 (1966), 1384-1386. (1966) MR0209413
  4. A. N. Šarkovskii, Attracting sets containing no cycles, Ukrain. Mat. Ž. 20 (1968), 136-142. (In Russian.) (1968) MR0225314

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.