Gaps in analytic quotients

Stevo Todorčević

Fundamenta Mathematicae (1998)

  • Volume: 156, Issue: 1, page 85-97
  • ISSN: 0016-2736

Abstract

top
We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.

How to cite

top

Todorčević, Stevo. "Gaps in analytic quotients." Fundamenta Mathematicae 156.1 (1998): 85-97. <http://eudml.org/doc/212263>.

@article{Todorčević1998,
abstract = {We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.},
author = {Todorčević, Stevo},
journal = {Fundamenta Mathematicae},
keywords = {analytic ideal on ; quotient algebra; Baire lifting; Hausdorff gap; -ideal},
language = {eng},
number = {1},
pages = {85-97},
title = {Gaps in analytic quotients},
url = {http://eudml.org/doc/212263},
volume = {156},
year = {1998},
}

TY - JOUR
AU - Todorčević, Stevo
TI - Gaps in analytic quotients
JO - Fundamenta Mathematicae
PY - 1998
VL - 156
IS - 1
SP - 85
EP - 97
AB - We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.
LA - eng
KW - analytic ideal on ; quotient algebra; Baire lifting; Hausdorff gap; -ideal
UR - http://eudml.org/doc/212263
ER -

References

top
  1. [1] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, Cambridge Univ. Press, 1987. Zbl0629.03030
  2. [2] I. Farah, Embedding partially ordered sets into ω ω , Fund. Math. 151 (1996), 53-95. Zbl0861.03039
  3. [3] I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997. 
  4. [4] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Ges. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. Zbl40.0446.02
  5. [5] F. Hausdorff, Summen von 1 Mengen, Fund. Math. 26 (1936), 241-255. 
  6. [6] S.-A. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976. 
  7. [7] W. Just, The space ( ω * ) n + 1 is not always a continuous image of ( ω * ) n , Fund. Math. 132 (1989), 59-72. Zbl0697.54002
  8. [8] W. Just, Nowhere dense P-subsets of ω*, Proc. Amer. Math. Soc. 106 (1989), 1145-1146. Zbl0674.54016
  9. [9] W. Just, A modification of Shelah's oracle chain condition with applications, Trans. Amer. Math. Soc. 329 (1992), 325-341. 
  10. [10] W. Just, A weak version of AT from OCA, in: Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 281-291. Zbl0824.04003
  11. [11] W. Just and A. Krawczyk, On certain Boolean algebras P(ω)/I, Trans. Amer. Math. Soc. 285 (1984), 411-429. Zbl0519.06011
  12. [12] A. S. Kechris, Lectures on definable group actions and equivalence relations, in preparation. 
  13. [13] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242. Zbl0865.03039
  14. [14] K. Kunen, (κ,λ*) gaps under MA, note of August 1976. 
  15. [15] A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (ed.), Colloq. Math. Soc. János Bolyai 10, North-Holland, 1975, 1095-1097. 
  16. [16] K. Mazur, F σ -ideals and ω 1 ω 1 * -gaps in the Boolean algebra CP(ω)/I, Fund. Math. 138 (1991), 103-111. 
  17. [17] M. Scheepers, Gaps in ω ω , in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 439-561. 
  18. [18] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982. 
  19. [19] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348. Zbl0862.04002
  20. [20] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. Zbl0435.46023
  21. [21] S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989. Zbl0659.54001
  22. [22] S. Todorčević, Analytic gaps, Fund. Math. 150 (1996), 55-66. Zbl0851.04002
  23. [23] B. Veličković, Definable automorphisms of P(ω) /fin, Proc. Amer. Math. Soc. 96 (1986), 130-135. Zbl0614.03049
  24. [24] B. Veličković, OCA and automorphisms of CP(ω)/fin, Topology Appl. 49 (1992), 1-12. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.