Gaps in analytic quotients
Fundamenta Mathematicae (1998)
- Volume: 156, Issue: 1, page 85-97
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topTodorčević, Stevo. "Gaps in analytic quotients." Fundamenta Mathematicae 156.1 (1998): 85-97. <http://eudml.org/doc/212263>.
@article{Todorčević1998,
abstract = {We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.},
author = {Todorčević, Stevo},
journal = {Fundamenta Mathematicae},
keywords = {analytic ideal on ; quotient algebra; Baire lifting; Hausdorff gap; -ideal},
language = {eng},
number = {1},
pages = {85-97},
title = {Gaps in analytic quotients},
url = {http://eudml.org/doc/212263},
volume = {156},
year = {1998},
}
TY - JOUR
AU - Todorčević, Stevo
TI - Gaps in analytic quotients
JO - Fundamenta Mathematicae
PY - 1998
VL - 156
IS - 1
SP - 85
EP - 97
AB - We prove that the quotient algebra P(ℕ)/I over any analytic ideal I on ℕ contains a Hausdorff gap.
LA - eng
KW - analytic ideal on ; quotient algebra; Baire lifting; Hausdorff gap; -ideal
UR - http://eudml.org/doc/212263
ER -
References
top- [1] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, Cambridge Univ. Press, 1987. Zbl0629.03030
- [2] I. Farah, Embedding partially ordered sets into , Fund. Math. 151 (1996), 53-95. Zbl0861.03039
- [3] I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997.
- [4] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. König. Sächs. Ges. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. Zbl40.0446.02
- [5] F. Hausdorff, Summen von Mengen, Fund. Math. 26 (1936), 241-255.
- [6] S.-A. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976.
- [7] W. Just, The space is not always a continuous image of , Fund. Math. 132 (1989), 59-72. Zbl0697.54002
- [8] W. Just, Nowhere dense P-subsets of ω*, Proc. Amer. Math. Soc. 106 (1989), 1145-1146. Zbl0674.54016
- [9] W. Just, A modification of Shelah's oracle chain condition with applications, Trans. Amer. Math. Soc. 329 (1992), 325-341.
- [10] W. Just, A weak version of AT from OCA, in: Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 281-291. Zbl0824.04003
- [11] W. Just and A. Krawczyk, On certain Boolean algebras P(ω)/I, Trans. Amer. Math. Soc. 285 (1984), 411-429. Zbl0519.06011
- [12] A. S. Kechris, Lectures on definable group actions and equivalence relations, in preparation.
- [13] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242. Zbl0865.03039
- [14] K. Kunen, (κ,λ*) gaps under MA, note of August 1976.
- [15] A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (ed.), Colloq. Math. Soc. János Bolyai 10, North-Holland, 1975, 1095-1097.
- [16] K. Mazur, -ideals and -gaps in the Boolean algebra CP(ω)/I, Fund. Math. 138 (1991), 103-111.
- [17] M. Scheepers, Gaps in , in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 439-561.
- [18] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.
- [19] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348. Zbl0862.04002
- [20] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. Zbl0435.46023
- [21] S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989. Zbl0659.54001
- [22] S. Todorčević, Analytic gaps, Fund. Math. 150 (1996), 55-66. Zbl0851.04002
- [23] B. Veličković, Definable automorphisms of P(ω) /fin, Proc. Amer. Math. Soc. 96 (1986), 130-135. Zbl0614.03049
- [24] B. Veličković, OCA and automorphisms of CP(ω)/fin, Topology Appl. 49 (1992), 1-12.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.