Pcf theory and cardinal invariants of the reals
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 1, page 153-162
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSoukup, Lajos. "Pcf theory and cardinal invariants of the reals." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 153-162. <http://eudml.org/doc/246401>.
@article{Soukup2011,
abstract = {The additivity spectrum $\operatorname\{ADD\}(\mathcal\{I\})$ of an ideal $\mathcal\{I\}\subset \mathcal\{P\}(I)$ is the set of all regular cardinals $\kappa$ such that there is an increasing chain $\\{A_\alpha:\alpha<\kappa\\}\subset \mathcal\{I\}$ with $\bigcup_\{\alpha<\kappa\}A_\alpha\notin \mathcal\{I\}$. We investigate which set $A$ of regular cardinals can be the additivity spectrum of certain ideals. Assume that $\mathcal\{I\}=\mathcal\{B\}$ or $\mathcal\{I\}=\mathcal\{N\}$, where $\mathcal\{B\}$ denotes the $\{\sigma\}$-ideal generated by the compact subsets of the Baire space $\omega^\omega$, and $\mathcal\{N\}$ is the ideal of the null sets. We show that if $A$ is a non-empty progressive set of uncountable regular cardinals and $\operatorname\{pcf\}(A)=A$, then $\operatorname\{ADD\}(\mathcal\{I\})=A$ in some c.c.c generic extension of the ground model. On the other hand, we also show that if $A$ is a countable subset of $\operatorname\{ADD\}(\mathcal\{I\})$, then $\operatorname\{pcf\}(A)\subset \operatorname\{ADD\}(\mathcal\{I\})$. For countable sets these results give a full characterization of the additivity spectrum of $\mathcal\{I\}$: a non-empty countable set $A$ of uncountable regular cardinals can be $\operatorname\{ADD\}(\mathcal\{I\})$ in some c.c.c generic extension iff $A=\operatorname\{pcf\}(A)$.},
author = {Soukup, Lajos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal invariants; reals; pcf theory; null set; meager set; Baire space; additivity},
language = {eng},
number = {1},
pages = {153-162},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pcf theory and cardinal invariants of the reals},
url = {http://eudml.org/doc/246401},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Soukup, Lajos
TI - Pcf theory and cardinal invariants of the reals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 153
EP - 162
AB - The additivity spectrum $\operatorname{ADD}(\mathcal{I})$ of an ideal $\mathcal{I}\subset \mathcal{P}(I)$ is the set of all regular cardinals $\kappa$ such that there is an increasing chain $\{A_\alpha:\alpha<\kappa\}\subset \mathcal{I}$ with $\bigcup_{\alpha<\kappa}A_\alpha\notin \mathcal{I}$. We investigate which set $A$ of regular cardinals can be the additivity spectrum of certain ideals. Assume that $\mathcal{I}=\mathcal{B}$ or $\mathcal{I}=\mathcal{N}$, where $\mathcal{B}$ denotes the ${\sigma}$-ideal generated by the compact subsets of the Baire space $\omega^\omega$, and $\mathcal{N}$ is the ideal of the null sets. We show that if $A$ is a non-empty progressive set of uncountable regular cardinals and $\operatorname{pcf}(A)=A$, then $\operatorname{ADD}(\mathcal{I})=A$ in some c.c.c generic extension of the ground model. On the other hand, we also show that if $A$ is a countable subset of $\operatorname{ADD}(\mathcal{I})$, then $\operatorname{pcf}(A)\subset \operatorname{ADD}(\mathcal{I})$. For countable sets these results give a full characterization of the additivity spectrum of $\mathcal{I}$: a non-empty countable set $A$ of uncountable regular cardinals can be $\operatorname{ADD}(\mathcal{I})$ in some c.c.c generic extension iff $A=\operatorname{pcf}(A)$.
LA - eng
KW - cardinal invariants; reals; pcf theory; null set; meager set; Baire space; additivity
UR - http://eudml.org/doc/246401
ER -
References
top- Abraham U., Magidor M., Cardinal Arithmetic, in Handbook of Set Theory, Springer, New York, 2010. Zbl1198.03053
- Bartoszynski T., Kada M., Hechler's theorem for the meager ideal, Topology Appl. 146/147 (2005), 429–435. Zbl1059.03049MR2107162
- Burke M.R., Kada M., 10.1007/s00153-004-0224-4, Arch. Math. Logic 43 (2004), no. 5, 703–722. Zbl1057.03039MR2076412DOI10.1007/s00153-004-0224-4
- Farah I., Embedding partially ordered sets into $\omega^\omega$, Fund. Math. 151 (1996), no. 1, 53–95. MR1405521
- Fremlin D.H., Measure theory, Vol. 4, Topological Measure Spaces, Part I, II, Corrected second printing of the 2003 original, Torres Fremlin, Colchester, 2006. Zbl1166.28002MR2462372
- Hechler S.H., On the existence of certain cofinal subsets of $^{\omega }\omega$, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), American Mathematical Society, Providence, R.I., 1974., pp. 155–173. MR0360266
- Shelah S., Cardinal Arithmetic, Oxford University Press, Oxford, 1994. Zbl0864.03032MR1318912
- Shelah S., Thomas S., 10.2307/2275578, J. Symbolic Logic 62 (1997), no. 3, 902–916. Zbl0889.03037MR1472129DOI10.2307/2275578
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.