Nonseparable Radon measures and small compact spaces
Fundamenta Mathematicae (1997)
- Volume: 153, Issue: 1, page 25-40
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topPlebanek, Grzegorz. "Nonseparable Radon measures and small compact spaces." Fundamenta Mathematicae 153.1 (1997): 25-40. <http://eudml.org/doc/212213>.
@article{Plebanek1997,
abstract = {We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube $[0, 1]^κ$ (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ κ this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of $ω_1$ null sets in $2^\{ω1\}$ such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is “no” for κ = ω. We also give alternative proofs of two related results due to Kunen and van Mill [18].},
author = {Plebanek, Grzegorz},
journal = {Fundamenta Mathematicae},
keywords = {Radon measure of Maharam type; measure algebras},
language = {eng},
number = {1},
pages = {25-40},
title = {Nonseparable Radon measures and small compact spaces},
url = {http://eudml.org/doc/212213},
volume = {153},
year = {1997},
}
TY - JOUR
AU - Plebanek, Grzegorz
TI - Nonseparable Radon measures and small compact spaces
JO - Fundamenta Mathematicae
PY - 1997
VL - 153
IS - 1
SP - 25
EP - 40
AB - We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube $[0, 1]^κ$ (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ κ this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of $ω_1$ null sets in $2^{ω1}$ such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is “no” for κ = ω. We also give alternative proofs of two related results due to Kunen and van Mill [18].
LA - eng
KW - Radon measure of Maharam type; measure algebras
UR - http://eudml.org/doc/212213
ER -
References
top- [1] S. Argyros, S. Mercourakis and S. Negrepontis, Functional-analytic properties of Corson-compact spaces, Studia Math. 89 (1988), 197-229. Zbl0656.46014
- [2] T. Bartoszyński and H. Judah, Set Theory: on the structure of the real line, A. K. Peters, 1995. Zbl0834.04001
- [3] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110. Zbl0764.03018
- [4] J. Brendle, H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, Ann. Pure Appl. Logic 58 (1992), 185-199. Zbl0790.03054
- [5] J. Cichoń, A. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146. Zbl0593.28003
- [6] J. Cichoń, A. Szymański and B. Węglorz, On intersections of sets of positive Lebesgue measure, Colloq. Math. 52 (1987), 173-177. Zbl0627.28005
- [7] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982.
- [8] R. G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964), 243-246. Zbl0121.33102
- [9] M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54. Zbl0805.28008
- [10] M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277. Zbl1068.28502
- [11] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, Cambridge, 1984. Zbl0551.03033
- [12] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, J. D. Monk (ed.), North-Holland, 1989, Vol. 3, Chap. 22, 877-980.
- [13] D. H. Fremlin, Real-valued measurable cardinals, in: Israel Math. Conf. Proc. 6, 1993, 961-1044. Zbl0839.03038
- [14] R. Haydon, On Banach spaces which contain and types of measures on compact spaces, Israel J. Math. 28 (1977) 313-324. Zbl0365.46020
- [15] R. Haydon, On dual -spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978) 142-152. Zbl0407.46018
- [16] K. Kunen, Set Theory, Stud. Logic 102, North-Holland, 1980.
- [17] K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287.
- [18] K. Kunen and J. van Mill, Measures on Corson compact spaces, Fund. Math. 147 (1995), 61-72. Zbl0834.54014
- [19] G. Plebanek, Compact spaces that result from adequate families of sets, Topology Appl. 65 (1995), 257-270. Zbl0869.54003
- [20] G. Plebanek, On Radon measures on first-countable spaces, Fund. Math. 148 (1995), 159-164. Zbl0853.28005
- [21] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
- [22] B. E. Shapirovskiĭ, Special types of embeddings in Tychonoff cubes. Subspaces of Σ-products and cardinal invariants, in: Á. Császár (ed.), Topology, Vol. II, North-Holand, Amsterdam, 1980, 1055-1086. Zbl0437.54008
- [23] J. E. Vaughan, Small uncountable cardinals and topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, Chapter 11, 195-216.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.