Measures on Corson compact spaces

Kenneth Kunen; Jan van Mill

Fundamenta Mathematicae (1995)

  • Volume: 147, Issue: 1, page 61-72
  • ISSN: 0016-2736

Abstract

top
We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.

How to cite

top

Kunen, Kenneth, and van Mill, Jan. "Measures on Corson compact spaces." Fundamenta Mathematicae 147.1 (1995): 61-72. <http://eudml.org/doc/212074>.

@article{Kunen1995,
abstract = {We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.},
author = {Kunen, Kenneth, van Mill, Jan},
journal = {Fundamenta Mathematicae},
keywords = {Corson compact space; Radon probability measure},
language = {eng},
number = {1},
pages = {61-72},
title = {Measures on Corson compact spaces},
url = {http://eudml.org/doc/212074},
volume = {147},
year = {1995},
}

TY - JOUR
AU - Kunen, Kenneth
AU - van Mill, Jan
TI - Measures on Corson compact spaces
JO - Fundamenta Mathematicae
PY - 1995
VL - 147
IS - 1
SP - 61
EP - 72
AB - We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.
LA - eng
KW - Corson compact space; Radon probability measure
UR - http://eudml.org/doc/212074
ER -

References

top
  1. [1] J. Cichoń, A. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146. Zbl0593.28003
  2. [2] M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54. Zbl0805.28008
  3. [3] V. V. Fedorchuk, On the cardinality of hereditarily separable bicompacta, Dokl. Akad. Nauk SSSR 222 (1975), 302-305 (in Russian). 
  4. [4] D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
  5. [5] P. Halmos, Measure Theory, Van Nostrand, 1968. 
  6. [6] K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287. 
  7. [7] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108-111. Zbl0063.03723
  8. [8] R. D. Mauldin, The existence of non-measurable sets, Amer. Math. Monthly 86 (1979), 45-46. Zbl0415.28002
  9. [9] H. P. Rosenthal, On injective Banach spaces and the spaces L ( μ ) for finite measures μ, Acta Math. 124 (1970), 205-248. Zbl0207.42803

NotesEmbed ?

top

You must be logged in to post comments.