Measures on Corson compact spaces

Kenneth Kunen; Jan van Mill

Fundamenta Mathematicae (1995)

  • Volume: 147, Issue: 1, page 61-72
  • ISSN: 0016-2736

Abstract

top
We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.

How to cite

top

Kunen, Kenneth, and van Mill, Jan. "Measures on Corson compact spaces." Fundamenta Mathematicae 147.1 (1995): 61-72. <http://eudml.org/doc/212074>.

@article{Kunen1995,
abstract = {We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.},
author = {Kunen, Kenneth, van Mill, Jan},
journal = {Fundamenta Mathematicae},
keywords = {Corson compact space; Radon probability measure},
language = {eng},
number = {1},
pages = {61-72},
title = {Measures on Corson compact spaces},
url = {http://eudml.org/doc/212074},
volume = {147},
year = {1995},
}

TY - JOUR
AU - Kunen, Kenneth
AU - van Mill, Jan
TI - Measures on Corson compact spaces
JO - Fundamenta Mathematicae
PY - 1995
VL - 147
IS - 1
SP - 61
EP - 72
AB - We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.
LA - eng
KW - Corson compact space; Radon probability measure
UR - http://eudml.org/doc/212074
ER -

References

top
  1. [1] J. Cichoń, A. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146. Zbl0593.28003
  2. [2] M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54. Zbl0805.28008
  3. [3] V. V. Fedorchuk, On the cardinality of hereditarily separable bicompacta, Dokl. Akad. Nauk SSSR 222 (1975), 302-305 (in Russian). 
  4. [4] D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
  5. [5] P. Halmos, Measure Theory, Van Nostrand, 1968. 
  6. [6] K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287. 
  7. [7] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108-111. Zbl0063.03723
  8. [8] R. D. Mauldin, The existence of non-measurable sets, Amer. Math. Monthly 86 (1979), 45-46. Zbl0415.28002
  9. [9] H. P. Rosenthal, On injective Banach spaces and the spaces L ( μ ) for finite measures μ, Acta Math. 124 (1970), 205-248. Zbl0207.42803

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.