On compact spaces carrying Radon measures of uncountable Maharam type
Fundamenta Mathematicae (1997)
- Volume: 154, Issue: 3, page 295-304
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topFremlin, David. "On compact spaces carrying Radon measures of uncountable Maharam type." Fundamenta Mathematicae 154.3 (1997): 295-304. <http://eudml.org/doc/212239>.
@article{Fremlin1997,
abstract = {If Martin’s Axiom is true and the continuum hypothesis is false, and X is a compact Radon measure space with a non-separable $L^1$ space, then there is a continuous surjection from X onto $[0,1]^\{ω_1\}$.},
author = {Fremlin, David},
journal = {Fundamenta Mathematicae},
keywords = {compact Radon measure space; continuous surjection; Martin's axiom; continuum hypothesis},
language = {eng},
number = {3},
pages = {295-304},
title = {On compact spaces carrying Radon measures of uncountable Maharam type},
url = {http://eudml.org/doc/212239},
volume = {154},
year = {1997},
}
TY - JOUR
AU - Fremlin, David
TI - On compact spaces carrying Radon measures of uncountable Maharam type
JO - Fundamenta Mathematicae
PY - 1997
VL - 154
IS - 3
SP - 295
EP - 304
AB - If Martin’s Axiom is true and the continuum hypothesis is false, and X is a compact Radon measure space with a non-separable $L^1$ space, then there is a continuous surjection from X onto $[0,1]^{ω_1}$.
LA - eng
KW - compact Radon measure space; continuous surjection; Martin's axiom; continuum hypothesis
UR - http://eudml.org/doc/212239
ER -
References
top- [1] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982.
- [2] M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54. Zbl0805.28008
- [3] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
- [4] D. H. Fremlin, Large correlated families of positive random variables, Math. Proc. Cambridge Philos. Soc. 103 (1988), 147-162. Zbl0639.28006
- [5] D. H. Fremlin, Measure algebras, pp. 877-980 in [13].
- [6] D. H. Fremlin, Real-valued-measurable cardinals, pp. 151-304 in [9]. Zbl0839.03038
- [7] R. G. Haydon, On Banach spaces which contain and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324. Zbl0365.46020
- [8] R. G. Haydon, On dual -spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978), 142-152. Zbl0407.46018
- [9] H. Judah (ed.), Set Theory of the Reals, Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993.
- [10] K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287.
- [11] K. Kunen and J. van Mill, Measures on Corson compact spaces, Fund. Math. 147 (1995), 61-72. Zbl0834.54014
- [12] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108-111. Zbl0063.03723
- [13] J. D. Monk (ed.), Handbook of Boolean Algebras, North-Holland, 1989.
- [14] G. Plebanek, Nonseparable Radon measures and small compact spaces, Fund. Math. 153 (1997), 25-40. Zbl0905.28008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.