# Gδ -sets in topological spaces and games

Winfried Just; Marion Scheepers; Juris Steprans; Paul Szeptycki

Fundamenta Mathematicae (1997)

- Volume: 153, Issue: 1, page 41-58
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topJust, Winfried, et al. "Gδ -sets in topological spaces and games." Fundamenta Mathematicae 153.1 (1997): 41-58. <http://eudml.org/doc/212214>.

@article{Just1997,

abstract = {Players ONE and TWO play the following game: In the nth inning ONE chooses a set $O_n$ from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset $T_n$ of X. The players must obey the rule that $O_n ⊆ O_\{n+1\} ⊆ T_\{n+1\} ⊆ T_n$ for each n. TWO wins if the intersection of TWO’s sets is equal to the union of ONE’s sets. If ONE has no winning strategy, then each element of ℱ is a $G_δ$-set. To what extent is the converse true? We show that:
(A) For ℱ the collection of countable subsets of X:
1. There are subsets of the real line for which neither player has a winning strategy in this game.
2. The statement “If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a $G_δ$-set” is independent of the axioms of classical mathematics.
3. There are spaces whose countable subsets are $G_δ$-sets, and yet ONE has a winning strategy in this game.
4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable.
(B) For ℱ the collection of $G_σ$-subsets of a subset X of the real line the determinacy of this game is independent of ZFC.},

author = {Just, Winfried, Scheepers, Marion, Steprans, Juris, Szeptycki, Paul},

journal = {Fundamenta Mathematicae},

keywords = {game; strategy; Lusin set, Sierpiński set, Rothberger's property C"; concentrated set; λ-set, σ-set; perfectly meager set, Q-set; $s_0$-set; $A_1$-set; $A_2$-set; $A_3$-set; $\{b\}$; $\{d\}$; Lusin set; Sierpiński set},

language = {eng},

number = {1},

pages = {41-58},

title = {Gδ -sets in topological spaces and games},

url = {http://eudml.org/doc/212214},

volume = {153},

year = {1997},

}

TY - JOUR

AU - Just, Winfried

AU - Scheepers, Marion

AU - Steprans, Juris

AU - Szeptycki, Paul

TI - Gδ -sets in topological spaces and games

JO - Fundamenta Mathematicae

PY - 1997

VL - 153

IS - 1

SP - 41

EP - 58

AB - Players ONE and TWO play the following game: In the nth inning ONE chooses a set $O_n$ from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset $T_n$ of X. The players must obey the rule that $O_n ⊆ O_{n+1} ⊆ T_{n+1} ⊆ T_n$ for each n. TWO wins if the intersection of TWO’s sets is equal to the union of ONE’s sets. If ONE has no winning strategy, then each element of ℱ is a $G_δ$-set. To what extent is the converse true? We show that:
(A) For ℱ the collection of countable subsets of X:
1. There are subsets of the real line for which neither player has a winning strategy in this game.
2. The statement “If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a $G_δ$-set” is independent of the axioms of classical mathematics.
3. There are spaces whose countable subsets are $G_δ$-sets, and yet ONE has a winning strategy in this game.
4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable.
(B) For ℱ the collection of $G_σ$-subsets of a subset X of the real line the determinacy of this game is independent of ZFC.

LA - eng

KW - game; strategy; Lusin set, Sierpiński set, Rothberger's property C"; concentrated set; λ-set, σ-set; perfectly meager set, Q-set; $s_0$-set; $A_1$-set; $A_2$-set; $A_3$-set; ${b}$; ${d}$; Lusin set; Sierpiński set

UR - http://eudml.org/doc/212214

ER -

## References

top- [1] Z. Balogh, There is a Q-set space in ZFC, Proc. Amer. Math. Soc. 113 (1991), 557-561. Zbl0748.54012
- [2] T. Bartoszyński and M. Scheepers, A-sets, Real Anal. Exchange 19 (1993-94), 521-528.
- [3] A. S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62 (1934), 289-300. Zbl0009.10504
- [4] E. Čech, Sur la dimension des espaces parfaitement normaux, Bull. Internat. Acad. Bohême (Prague) 33 (1932), 38-55.
- [5] H F. Hausdorff, Dimension und äusseres Mass, Math. Ann. 79 (1919), 157-179. Zbl46.0292.01
- [6] W. Just, A. Miller, M. Scheepers and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266. Zbl0870.03021
- [7] K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, 1984. Zbl0443.03021
- [8] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.
- [9] K. Kuratowski, Sur une famille d'ensembles singuliers, Fund. Math. 21 (1933), 127-128. Zbl0008.24801
- [10] N. Lusin, Sur l'existence d'un ensemble non dénombrable qui est de première catégorie dans tout ensemble parfait, Fund. Math. 2 (1921), 155-157. Zbl48.0275.05
- [11] N. Lusin, Sur les ensembles toujours de première catégorie, Fund. Math. 21 (1933), 114-126. Zbl0008.24704
- [12] A. W. Miller, On generating the category algebra and the Baire order problem, Bull. Acad. Polon. Sci. 27 (1979), 751-755. Zbl0461.54032
- [13] A. W. Miller, Special subsets of the real line, in: The Handbook of Set-Theoretic Topology, North-Holland, 1984, 201-223.
- [14] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55. Zbl64.0622.01
- [15] F. Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46. Zbl0032.33702
- [16] W. Sierpiński, Sur l’hypothese du continu $({2}_{0}^{\aleph}={\aleph}_{1})$, Fund. Math. 5 (1924), 177-187.
- [17] W. Sierpiński, Sur deux consequences d'un théorème de Hausdorff, Fund. Math. 26 (1945), 269-272. Zbl0060.12715
- [18] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, 2nd ed., Springer, 1978. Zbl0386.54001
- [19] J. Steprāns, Combinatorial consequences of adding Cohen reals, in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 583-617. Zbl0839.03037
- [20] E. Szpilrajn, Sur un problème de M. Banach, Fund. Math. 15 (1930), 212-214.
- [21] E. Szpilrajn, Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1934), 17-34. Zbl61.0229.01

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.